
Solutions of problems of Quantum computation and

quantum information by M.A. Nielsen and I.L. Chuang

Árpád Lukács

September 30, 2024

Abstract

See also the github repository for the LATEXsource �les and computer algebra (Reduce)

calculations.

Part I

Fundamental concepts

1 Introduction and overview

Ex. 1.1. Let us generate k uniformly distributed random values of x and evaluate f(x). If
all the values are the same, we assume that the function is constant, otherwise, that it is
balanced. If it is indeed constant, there is no possibility of making and error and claiming it to
be balanced. If it is balanced, the probability of all values being of one type is ε = 2× (1/2k)m
which tells us that the number of necessary attempts is k = 1− log2 ε.

Ex. 1.2. Let us create the operator D acting as follows: D|ψ⟩ = |0⟩ and D|ϕ⟩ = |1⟩, the
matrix of which is solved from the equations

D00ψ0 +D01ψ1 = 1 , D10ψ0 +D11ψ1 = 0 ,

D00φ0 +D01φ1 = 0 , D10φ0 +D11φ1 = 1 ,

or in matrix form

D

(
ψ0 φ0

ψ1 φ1

)
= I ,

yielding

D =
1

ψ0φ1 − φ0ψ1

(
φ1 −φ0

−ψ1 ψ0

)
.

Let us now apply (D−1 ⊗D−1)CNOT (D ⊗ I) to |ψ⟩ ⊗ |0⟩ or |φ⟩ ⊗ |0⟩. The result is a clone.
Where does this fail? D is not unitary, unless the states are orthogonal.

Conversely, if we could clone states, then making many copies and measuring in a basis
orthogonal to, say, ψ, and then measure half of them in a basis Ψ = (ψ, ψ′) where ⟨ψ, ψ′⟩ = 0,
and half of them in the analogous basis to φ. If we made enough copies, only for either ψ or
ψ′ will the result never be the primed one, and that is the input state.
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2 Introduction to quantum mechanics

2.1 Linear algebra

Ex. 2.1. (
1
−1

)
+

(
1
2

)
−
(
2
1

)
= 0 .

Ex. 2.2. In the basis |0⟩, |1⟩, the matrix representation is

(Aij) =

(
0 1
1 0

)
.

If we chose di�erent input or output bases, the matrix would change, e.g., choosing the same
input bases, but the output basis |1⟩, |0⟩ would yield

A′ =

(
1 0
0 1

)
.

Ex. 2.3. If A : V → W is an operator, then

A
∑

k

vk|k⟩ =
∑

jk

Ajkvk|j⟩ ,

and similarly for B : W → X,

B
∑

j

wj|j⟩ =
∑

ij

Bij|i⟩ .

Let now w = Av, so wj =
∑

k Ajkvk, yielding

BAv =
∑

ijk

BijAjkvk|i⟩ ,

where we can recognise the matrix product

(BA)ik =
∑

j

BijAjk .

Ex. 2.4. The de�nition of the identity operator is that it takes all vectors into themselves,
including those of a given basis,

I|j⟩ = |j⟩ .
We may write the left hand side as

∑
i Iij|i⟩, and the right hand side as

∑
i δij|j⟩, from which

we may read o� the matrix elements of I, Iij = δij, which are the elements of a matrix with 1
in the diagonal and 0 elsewhere.

Ex. 2.5. The mapping (·, ·) : Cn → C is an inner product:

(1) (v,
∑
λiwi) =

∑
j v

∗
j

∑
i λi(wi)j =

∑
i λi
∑

j v
∗
j (wi)j =

∑
i λi(v, wj) ,

(2) (v, w) =
∑

i v
∗
iwi = (

∑
i viw

∗
i )

∗ = (w, v)∗ ,

(3) (v, v) =
∑

i v
∗
i vi =

∑
i |vi|2 ≥ 0, and there is equality only if all vi = 0, i.e., if v = 0.
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Ex. 2.6. (
∑

i λivi, w) = (w,
∑

i λivi)
∗ = [

∑
i λi(w, vi)]

∗ =
∑

i λ
∗
i (w, vi)

∗ =
∑

i λ
∗
i (vi, w).

Ex. 2.7.

〈(
1
1

)
,

(
1
−1

)〉
= (1, 1)

(
1
−1

)
= 0. To calculate norms, we use the formula derived

in the previous exercise, showing that both vectors have a norm of
√
2, and so they can both

be normalised by multiplying them with 1/
√
2.

Ex. 2.8. The vectors obtained using the Gram-Schmidt procedure are all normalised. Orthog-
onality is shown as follows:

⟨vj|vk⟩ =
1

Nk

〈
vj

∣∣∣∣∣wk −
k−1∑

i=1

⟨vi|wk⟩vi
〉

=
1

Nk

(
⟨vj|wk⟩ −

k−1∑

i=1

⟨vi|wk⟩⟨vj|vi⟩
)
,

where Nk denotes the denominator used when normalising vk [see eq. (2.17) in the book].
To proceed further, we shall assume without loss of generality that j < k, and prove by

induction, �rst for k = j + 1, in which case we obtain

⟨vj|vj+1⟩ =
1

Nk

(
⟨vj|wj+1⟩ −

j∑

i=1

⟨vi|wj+1⟩⟨vj|vi⟩
)

=
1

Nk

(⟨vj|wj+1⟩ − ⟨vj|wj+1⟩) = 0 ,

where we have used that for i < j+1 ⟨vj|vi⟩ = δi,j. Second, the induction step, using the same
intermediate:

⟨vj|vk+1⟩ =
1

Nk+1

(
⟨vj|wk+1⟩ −

k∑

i=1

⟨vi|wk⟩⟨vj|vi⟩
)

=
1

Nk+1

(⟨vj|wk+1 − ⟨vj|wk⟩) = 0 .

Ex. 2.9. The outer product representation of any operator may be obtained using eq. (2.25)
of the book,

σ0 = I = |0⟩⟨0|+ |1⟩⟨1| , σ1 = |0⟩⟨1|+ |1⟩⟨0| ,
σ2 = −i|0⟩⟨1|+ i|1⟩⟨0| , σ3 = |0⟩⟨0| − |1⟩⟨1| .

Ex. 2.10. Let A = |vj⟩⟨vk|. The matrix representation of this operator is

Aiℓ = ⟨vi|A|vℓ⟩ = ⟨vi|vj⟩⟨vk|vℓ⟩ = δijδkℓ ,

where in the last step we used the orthonormality of the basis. The result is a matrix with a 1
in the jk element (jth row kth column) and 0 everywhere else.

Ex. 2.11. For the 0 and 3 Pauli matrices, see the previous one. For all Pauli matrices,
the characteristic polynomial is c(λ) = λ2 − 1, with solutions λ = ±1. The corresponding
eigenvectors are easily read o�:

σ1 =

(
0 1
1 0

)
, σ0 − 1 =

(
−1 1
1 −1

)
, σ0 + 1 =

(
1 1
1 1

)
,

from where

|1⟩1 =
1√
2

(
1
1

)
=

1√
2
(|0⟩+ |1⟩) , | − 1⟩1 =

1√
2

(
1
−1

)
=

1√
2
(|0⟩ − |1⟩) .
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Similarly,

σ2 =

(
0 −i
i 0

)
, σ0 − 1 =

(
−1 −i
i −1

)
, σ0 + 1 =

(
1 −i
i 1

)
,

leading to

|1⟩2 =
1√
2

(
1
i

)
=

1√
2
(|0⟩+ i|1⟩) , | − 1⟩2 =

1√
2

(
1
−i

)
=

1√
2
(|0⟩ − i|1⟩) .

Ex. 2.12. The characteristic polynomial of the matrix is

c(λ) = det

(
1 0
1 1

)
− λ = x2 − 2x+ 1 = (x− 1)2 ,

i.e., the (degenerate) eigenvalue is 1. The matrix which should annihilate the eigenvectors is
(
1 0
1 1

)
− 1 =

(
0 0
1 0

)
,

and as this has the sole normalised solution (0, 1)T , the corresponding eigenspace is 1 dimen-
sional, and the eigenspaces do not span C2.

Ex. 2.13. The adjoint of a dyad |v⟩⟨w|:

⟨x |(|v⟩⟨w|) y ⟩ =
〈
(|v⟩⟨w|)† x

∣∣∣ y
〉
,

and evaluating the left hand side,

⟨x |(|v⟩⟨w|) y ⟩ = ⟨x|v⟩⟨w|y⟩ = ⟨(|w⟩⟨v|)x| y⟩ ,

which, compared with the right hand side of the �rst equation yields that

(|v⟩⟨w|)† = |w⟩⟨v| .

Ex. 2.14.

〈(∑

i

aiAi

)†

v

∣∣∣∣∣∣
w

〉
=

〈
v

∣∣∣∣∣

(∑

i

aiAi

)
w

〉
=
∑

i

ai ⟨v|Aiw⟩ =
∑

i

ai

〈
A†
iv
∣∣∣w
〉

=

〈(∑

i

a∗iA
†
i

)
v

∣∣∣∣∣w
〉
,

which tells us that (∑

i

aiAi

)†

=
∑

i

a∗iA
†
i .

Ex. 2.15. 〈(
A†)† v

∣∣∣w
〉
=
〈
v
∣∣A†w

〉
=
〈
A†w

∣∣ v
〉∗

= ⟨w |Av ⟩∗ = ⟨Av|w⟩ .

Ex. 2.16. Using the orthonormality of the basis, ⟨i|j⟩ = δij,

P 2 =

(
k∑

i=1

|i⟩⟨i|
)(

k∑

j=1

|j⟩⟨j|
)

=
k∑

i,j=1

|i⟩⟨i||j⟩⟨j| =
k∑

i,j=1

⟨i|j⟩|i⟩⟨j| =
k∑

i=1

|i⟩⟨i| = P .
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Ex. 2.17. Using the spectral decomposition of the normal matrix, and the adjoint of a dyad,

(∑

i

λi|i⟩⟨i|
)†

=
∑

i

λ∗|i⟩⟨i| ,

which agrees with the original operator i� λi = λ∗i for all i.

Ex. 2.18. Again, use the spectral decomposition,

(∑

i

λi|i⟩⟨i|
)†∑

j

λj|j⟩⟨j| =
∑

i

λ∗iλi|i⟩⟨i| ,

and that the identity operator is
∑

i |i⟩⟨i|, from which we may read o� that unitarity is equiv-
alent to |λi|2 = λ∗iλi = 1 for all i, or λi = exp iαi, αi real.

Ex. 2.19. Direct calculation,

σ†
0 = I† = I = σ0 , σ†

1 = a

(
0 1
1 0

)†
=

(
0 1
1 0

)T
=

(
0 1
1 0

)
= σ1 ,

σ†
2 =

(
0 −i
i 0

)†
=

(
0 i
−i 0

)T
=

(
0 −i
i 0

)
= σ2 , σ†

3 =

(
1

−1

)†
=

(
1
0 −1

)
= σ3 .

To verify unitarity, again, calculate directly

σ†
iσi = (σi)

2 = I .

Ex. 2.20. The matrix elements of an operator are obtained as A′
ij = ⟨vi|A|vj⟩, so, using the

completeness relation,

A =
∑

ij

|vi⟩⟨vi|A|vj⟩⟨vj| =
∑

ij

A′
ij|vi⟩⟨vj| .

Calculating the matrix elements in another basis yields

A′′
ij = ⟨wi|A|wj⟩ =

∑

kℓ

⟨wi||vk⟩⟨vk|A|vℓ⟩⟨vℓ||wj⟩ =
∑

kℓ

⟨wi|vk⟩⟨vk|A|vℓ⟩⟨vℓ|wj⟩ =
∑

kℓ

U∗
kiA

′
kℓUℓj ,

or in matrix form, A′′ = U †A′U , where U is a matrix whose elements are Uij = ⟨vi|wj⟩, unitary
due to both bases being orthonormal.

Ex. 2.21. The following simpli�cations of the proof are possible: 1) QMP = (PMQ)† = 0.
2) The self-adjointness of QMQ is a direct consequence of (QMQ)† = Q†M †Q† = QMQ.

Ex. 2.22. Let M =M †, and M |1⟩ = λ1|1⟩ and M |2⟩ = λ2|2⟩, λ1 ̸= λ2. In this case,

⟨1|M |2⟩ = ⟨1 |(M |2⟩)⟩ = ⟨1|λ2|2⟩ = λ2⟨1|2⟩ ,

and similarly
⟨1|M |2⟩ = ⟨M †1|2⟩ = λ1⟨1|2⟩ ,

where we have used the fact that the eigenvalues of a self-adjoint operator are real, and so

(λ1 − λ2)⟨1|2⟩ = 0 .
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Ex. 2.23. In the eigenbasis of the operator, P =
∑

i |i⟩⟨i|, and also

P 2 =

(∑

i

λi|i⟩⟨i|
)2

=
∑

i

λ2i |i⟩⟨i| ,

where we have used the fact that the basis is orthonormal. All eigenvalues are real and satisfy
λ2i = λi, so λi ∈ {0, 1}.
Ex. 2.24. Let A a positive operator, and B = (A + A†)/2 and C = (A− A†)/(2i). This way,
A = B + iC. For any vector,

⟨x|A|x⟩ = ⟨x|B|x⟩+ i⟨x|C|x⟩ ,
and this is a real, positive number. As

⟨x|B|x⟩ = ⟨x|B†|x⟩∗ = ⟨x|B|x⟩∗ ,
⟨x|B|x⟩ is always real, and so is ⟨x|C|x⟩. As ⟨x|A|x⟩ is also real, this is only possible if for all
vectors of x, ⟨x|C|x⟩ = 0.

If for an operator C ⟨x|C|x⟩ = 0 for all x, C = 0. Let us consider two vectors, x, y, and for
such an operator

0 = ⟨x+ αy|C|x+ αy⟩ = ⟨x|C|αy⟩+ ⟨αy|C|x⟩ = α⟨x|C|y⟩+ α∗⟨y|C|x⟩ ,
and now adding this equation with α = 1 to−i times this equation with α = i yields ⟨x|C|y⟩ = 0,
i.e., all matrix elements of C vanish, therefore so does C. As a result, A = B and B = B†, so
A is self-adjoint.

Ex. 2.25. Take an arbitrary vector x,

⟨x|A†A|x⟩ = ⟨Ax|Ax⟩ = ∥Ax∥2 ≥ 0 .

Ex. 2.26. Let ψ = (|0⟩+ |1⟩)/
√
2. Then

ψ⊗2 =
1

2
(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩) = 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) ,

ψ⊗3 = ψ⊗2 ⊗ ψ =
1

23/2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)⊗ (|0⟩+ |1⟩)

=
1

23/2
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩+ |111⟩) .

To do the same in terms of the Kronecker product, we shall use ψ = (1, 1)T/
√
2, and so

ψ⊗2 =
1

2

(
1
1

)
⊗
(
1
1

)
=

1

2




1
1
1
1


 ,

ψ⊗3 =
1

23/2




1
1
1
1


⊗

(
1
1

)
=




1
1
1
1
1
1
1
1




.
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Ex. 2.27. Tensor products of Pauli operators:

X ⊗ Z =

(
1

1

)
⊗
(
1

−1

)
=

(
0 Z
Z 0

)
=




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 ,

and

I ⊗X =

(
1

1

)
⊗
(

1
1

)
=

(
X

X

)
=




0 1
1 0

0 1
1 0


 ,

and similarly

X ⊗ I =

(
1

1

)
⊗
(
1

1

)
=

(
I

I

)
=




1 0
0 1

1 0
0 1


 .

As we can see, I ⊗X ̸= X ⊗ I, the tensor product is non-commutative.

Ex. 2.28. As the matrix elements of the tensor product are given by eq. (2.50) in the book,

(A⊗B)∗ =




A11B A12B . . . A1nB
A21B A22B . . . A2nB

. . . . . .
. . .

...
Am1B Am2B . . . AmnB




∗

=




A∗
11B

∗ A∗
12B

∗ . . . A∗
1nB

∗

A∗
21B

∗ A∗
22B

∗ . . . A∗
2nB

∗

. . . . . .
. . .

...
A∗
m1B

∗ A∗
m2B

∗ . . . A∗
mnB

∗


 = A∗ ⊗B∗ ,

Similarly,

(A⊗B)T =




A11B A12B . . . A1nB
A21B A22B . . . A2nB

. . . . . .
. . .

...
Am1B Am2B . . . AmnB




T

=




A11B
T A21B

T . . . Am1B
T

A12B
T A22B

T . . . Am2B
T

. . . . . .
. . .

...
A1nB

T A2nB
T . . . AnmB

T


 = AT ⊗BT ,

and (A⊗B)† = A† ⊗B† already follows from X† = (XT )∗.

Ex. 2.29. If U †U = I = V †V , then

(U ⊗ V )†(U ⊗ V ) = (U † ⊗ V †)(U ⊗ V ) = U †U ⊗ V †V = I ⊗ I = I ,

and similarly with taking the adjoint of the second operator in stead of the �rst.

Ex. 2.30. If H†
i = Hi, i = 1, 2, then

(H1 ⊗H2)
† = H†

1 ⊗H†
2 = H1 ⊗H2 .

Ex. 2.31. Let us choose on the two spaces the eigenbasis of the operators A, B, then, using
eq. (2.50) from the book,

A⊗B =




λ1µ1 0 . . . 0
0 λ2µ2 . . . 0
...

. . .
...

0 . . . λnµm


 ,
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where λi and µj are the eigenvalues of A and B, respectively. This is a positive matrix as all
its eigenvalues are real and positive.

Ex. 2.32. Let P,Q be projectors, P 2 = P , Q2 = Q, then

(P ⊗Q)2 = P 2 ⊗Q2 = P ⊗Q .

Ex. 2.33. The formula clearly holds for n = 1. Then

H⊗n =
1

2n

∑

x,y

(−1)x·y|x⟩⟨y| ⊗ [(|0⟩+ |1⟩) ⟨0|+ (|0⟩ − |1⟩) ⟨1|]

=
1

2n

∑

x,y

(−1)x·y [(|x0⟩+ |x1⟩) ⟨y0| + (|x0⟩ − |x1⟩) ⟨y1|]

=
1

2n

∑

x′y′

= (−1)x
′·y′|x′⟩⟨y′| .

For the 4⊗ 4 case, we need

H =

(
1 1
1 −1

)
,

yielding, using eq. (2.50)

H⊗2 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 .

Ex. 2.34. The characteristic polynomial of the matrix is p(λ) = (4− λ)2 − 9 = (7− λ)(1− λ),
so the eigenvalues are 7 and 1, so

A =

(
4 3
3 4

)
=

1

2

(
1
−1

)
(1,−1) +

7

2

(
1
1

)
(1, 1) .

Using this, the square root is

√
A =

1

2

(
1
−1

)
(1,−1) +

√
7

2

(
1
1

)
(1, 1) =

1

2

(√
7 + 1

√
7− 1√

7− 1
√
7 + 1

)
,

and the logarithm,

logA =
log 7

2

(
1
1

)
(1, 1) =

log 7

2

(
1 1
1 1

)
.

Ex. 2.35. For all the Pauli matrices, A2 = I holds. Elementary algebra shows that σiσj =
δij + iεijkσk, so for any unit vector v⃗, (v⃗σ⃗)2 = I holds, and splitting the power series of the
exponential for n = 2k and n = 2k + 1,

exp(iθv⃗σ⃗) =
∑

n

inθn(v⃗σ⃗)n

n!
=
∑

k

θ2k

(2k)!
I +

∑

k

i(−1)kθ2k+1

(2k + 1)!
v⃗σ⃗ = cos θI + i sin θ(v⃗σ⃗) .
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Ex. 2.36. The trace of the Pauli matrices, TrA =
∑

iAii, so

Tr σ0 = Tr I = 2 , Tr σ1 = Tr

(
1

1

)
= 0 ,

Tr σ2 = Tr

(
−i

i

)
= 0 , Tr σ3 = Tr

(
1

−1

)
= 0 .

Ex. 2.37. For any matrices A, B,

Tr (AB) =
∑

ij

AijBji =
∑

ij

BjiAij = Tr (BA) .

Ex. 2.38. For any matrices A, B,

Tr (A+B) =
∑

i

(A+B)ii =
∑

i

(Aii+Bii) = TrA+ TrB ,

and for any number z,

Tr (zA) =
∑

i

(zA)ii =
∑

i

zAii = z
∑

i

Aii = zTrA .

Ex. 2.39. Proving the scalar product nature of the Hilbert-Schmidt product requires linearity
in the second argument,

(A,B + C) = TrA†(B + C) = TrA†B + TrA†C = (A,B) + (A,C) ,

and
Tr (A, zB) = TrA†zB = zTrA†B = z(A,B) ,

and the exchange property,

(B,A) = TrB†A =
∑

ij

B∗
jiAij =

(∑

ij

A∗
jiBij

)∗

= (A,B)∗ ,

and positivity,

(A,A) =
∑

ij

A∗
jiAji =

∑

ij

|Aij|2 .

A nice orthogonal basis is E(ij) having matrix elements (E
(ij)
kℓ = δikδkℓ as clearly any matrix

has A =
∑

ij AijE
(ij), and (E(ij)E(kℓ) =

∑
noE

(ij)
on E

(kℓ)
on =

∑
on δioδjnδkoδℓn = δikδjℓ.

Ex. 2.40. Perform matrix multiplications (see ex.2.40.red for computer algebra). A concise
result is

σiσj = δijI + iϵijkσk ,

where there is an implicit summation over the repeated index k.

Ex. 2.41. See previous one.

Ex. 2.42.
[A,B] + {A,B}

2
=
AB −BA+ AB +BA

2
= AB .
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Ex. 2.43. See Ex. 2.40.

Ex. 2.44. If both commutators vanish, AB = [A,B] + {A,B} = 0, which, multiplied by A−1

yields B = A−1AB = A−1([A,B] + {A,B}) = A−10 = 0.

Ex. 2.45. [A,B]† = (AB −BA)† = (AB)† − (BA)† = B†A† − A†B† = [B†, A†].

Ex. 2.46. [A,B] = AB −BA and [B,A] = BA− AB, so [A,B] = −[B,A].

Ex. 2.47. If A = A† and B = B†, then (i[A,B])† = −i[A,B]† = −i[B†, A†] = i[A†, B†] =
i[A,B].

Ex. 2.48. Let P be a positive matrix, then there exist Q, such that P = Q†K. Its polar
decomposition is P = UJ where J =

√
P †P =

√
Q†QQ†Q = Q†Q = P . In this case, U = I.

Similarly, K = P .
For a unitary matrix U , J =

√
U †U = I and K =

√
UU † = I.

For a Hermitean matrix, H and H†H share an eigensystem, so U = I and K = J = |H|.

Ex. 2.49. Let N be normal, then N =
∑

i λi|i⟩⟨i| (by the spectral decomposition theo-
rem). In this case, N †N =

∑
ij λ

∗
iλj|i⟩⟨i| |j⟩⟨j| =

∑
i |λi|2|i⟩⟨i| and the resulting operator

J =
∑

i |λi||i⟩⟨i|. The corresponding unitary operator is U =
∑

i λi/|λi| |i⟩⟨i| (and extended to
zero eigenvalue subspaces). Due to UJ = JU , K = J .

Ex. 2.50. Let

A =

(
1 0
1 1

)
, A†A =

(
2 1
1 1

)
, J =

√
A†A =

1√
5

(
3 1
1 2

)
, K =

√
AA† =

1√
5

(
2 1
1 3

)
,

and so

U = AJ−1 =
1√
5

(
2 −1
1 2

)
= K−1A .

2.2 The postulates of quantum mechanics

Ex. 2.51. For the Hadamard gate H holds

H =
1√
2

(
1 1
1 −1

)
= H† = HT ,

so this exercise is equivalent to the next one.

Ex. 2.52. Using H from the previous exercise,

H2 =
1

2

(
1 1
1 −1

)2

= I .

Ex. 2.53. The characteristic polynomial is p(λ) = λ2 − 1, so λ = ±1 with eigenvectors
(1,

√
2− 1)T and (−1,

√
2 + 1)T .
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Ex. 2.54. If A and B are commuting operators, we may diagonalise them on the same basis,
A =

∑
i ai|i⟩⟨i| and B =

∑
i bi|i⟩⟨i|. In this basis,

expA =
∑

i

eai |i⟩⟨i| , expB =
∑

i

ebi |i⟩⟨i| ,

and
A+B =

∑

i

(ai + bi)|i⟩⟨i| , exp(A+B) =
∑

i

eai+bi |i⟩⟨i| ,

and
expA expB =

∑

i

eai |i⟩⟨i|
∑

j

ebj |j⟩⟨j| =
∑

ij

eai+bj |i⟩⟨i|j⟩⟨j| =
∑

i

eai+bi |i⟩⟨i| ,

where we have used ⟨i|j⟩ = δij.

Ex. 2.55. Let U be de�ned as in eq. (2.91). Then, using the power series of the exponential
and that H† = H,

U(t1, t2)
† = exp

iH(t2 − t1)

ℏ
,

and the solution of 2.54 to get

U(t1, t2)
†U(t1, t2) = exp

iH(t2 − t1)

ℏ
exp

−iH(t2 − t1)

ℏ
= exp 0 = I .

The product of the other order is done in the same way.

Ex. 2.56. Let U be unitary, then

U =
∑

i

eiκi |i⟩⟨i|

with κi real, in some basis |i⟩. The logarithm is computed as

logU =
∑

i

log eiκi |i⟩⟨i| =
∑

i

iκi|i⟩⟨i| ,

so
K = −i logU =

∑

i

κi|i⟩⟨i|

is a normal (diagonalisable) operator with real eigenvalues, so it is self-adjoint (Hermitean).

Ex. 2.57. After the measurement described by the set of operators {Lℓ}, the system is in the
state given by eq. (2.93) with a probability p(ℓ) given by eq. (2.92). A further measurement,
described by the operators {Mm} from this state brings the system to state

MmLℓψ√
⟨ψ|L†

ℓM
†
mMmL

†
ℓ|ψ⟩

√
⟨ψ|L†

ℓLℓ|ψ⟩
,

with a probability

p(m|ℓ)p(ℓ) = pℓ(m)p(ℓ) =
⟨ψ|L†

ℓM
†
mMmLℓ|ψ⟩

⟨ψ|L†
ℓLℓ|ψ⟩

⟨ψ|L†
ℓLℓ|ψ⟩ = ⟨ψ|L†

ℓM
†
mMmLℓ|ψ⟩ ,
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where p(m|ℓ) denotes the conditional probability of the system ending up with the measured
value m provided that the �rst measurement yielded value ℓ.

A measurement given by the operators {Nℓm}, Nℓm =MmLℓ takes the system into state

Nℓmψ√
⟨ψ|N †

ℓmNℓmψ⟩
=

NmLℓψ√
⟨ψ|L†

ℓM
†
mMmLℓ|ψ⟩

with probability
p(ℓ,m) = ⟨ψ|N †

ℓmNℓm|ψ⟩ = ⟨ψ|L†
ℓM

†
mMmLℓ|ψ⟩ .

We shall now consider the consequences of the completeness relation,

∑

ℓm

N †
ℓmNℓm =

∑

ℓm

L†
ℓM

†
mMmLℓ =

∑

ℓ

L†
ℓ

∑

m

M †
mMmLℓ =

∑

ℓ

L†
ℓLℓ = I .

As we can see, the two are physically equivalent, as they only di�er in the normalisation of the
output vector.

Ex. 2.58. Let |m⟩ be an eigenvector of M , M |m⟩ = m|m⟩, then the expectation value is

E(M) = ⟨M⟩ = ⟨m|M |m⟩ = ⟨m|m|m⟩ = m⟨m|m⟩ = m,

if |m⟩ is normalised. The standard deviation is ∆2(M) = ⟨M2⟩ − ⟨M⟩2, and the �rst one is

⟨M2⟩ = ⟨m|M2|m⟩ = ⟨m|m ·m|m⟩ = m2 ,

where we have used the for the adjoint ⟨m|M = ⟨m|M † = (M |m⟩)† = (m|m⟩)† = m⟨m| as for
a self-adjoint observable m is real. This shows that ∆(M) = 0 in an eigenstate.

Ex. 2.59. The expectation value is

⟨X⟩ = ⟨0|X|0⟩ = (1, 0)

(
−i

i

)(
1
0

)
= 0 ,

and as X2 = I, the standard deviation ∆2(X) = ⟨X2⟩ − ⟨X⟩2 = ⟨X2⟩ = 1.

Ex. 2.60. Assuming v2 = 1, the matrix v⃗ · σ⃗ satis�es (v⃗ · σ⃗)2 = I using σiσj = δijI + iϵijkσk.
Therefore, its eigenvalues must satisfy λ2 = 1. As the Pauli matrices do not commute, v⃗ · σ⃗
cannot be ±I, so its eigenvalues must be λ1 = 1 and λ2 = −1. The fact that the operators
P± = (I ± v⃗ · σ⃗)/2 act as the projectors on the eigenstates is easily veri�ed in this basis.

Ex. 2.61. The probability of measuring +1 is the same as the expectation value of the
projector, i.e.,

p(1) =
1

2
⟨0|I + v⃗ · σ⃗|0⟩ = 1

2
+ ⟨0|v⃗ · σ⃗|0⟩ = 1 + v3

2
,

as the 1, 1 component of all Pauli matrices except the third one vanishes. If the result 1 is
obtained, the new state after the measurement is

P+|0⟩√
⟨0|P+|0⟩

=
(I + v⃗ · σ⃗)|0⟩√

2(1 + v3)
=

1√
2
√
1 + v3

(
1 + v3
iv1 + v2

)
.
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Ex. 2.62. If for a measurement {Mm} the measurement operators and the POVM elements
Em =M †

mMm agree,
Em =M †

mMm =Mm ,

it follows that the measurement operators are self-adjoint,M †
m = E†

m = (M †
mMm)

† =M †
mMm =

Em =Mm , and so M2
m =M †

mMm = Em =Mm, they are projectors as well, and the complete-
ness relation demands that

∑
mMm = I,

I = I2 =

(∑

m

Em

)2

=
∑

m

E2
m +

∑

m ̸=n
EmEn =

∑

m

Em +
∑

m ̸=n
EmEn = I +

∑

m̸=n

EmEn ,

and all Mm = Em are positive operators, therefore so is EmEn, from which EmEn = 0 (m ̸= n)
follows, i.e., they are mutually exclusive projectors, and so correspond to a projective operator.

Ex. 2.63. Let {Mm} be a set of measurement operators. For each of these, Em =M †
mMm is a

positive self-adjoint operator, and therefore, its square root exists, and the polar decomposition
of Mm is Mm = Um

√
Em. The completeness relation reads

∑
mEm = I. Thus, Em is a set of

positive operators with the completeness property, i.e., a POVM.

Ex. 2.64. As the vectors ψk (k = 1, . . . ,m) are linearly independent, for each vector, it is
possible to �nd a normalised vector ϕk which is orthogonal to ψj (j ̸= k), and not orthogonal
to ψk, and take

Ek = |ϕk⟩⟨ϕk| (k = 1, . . . ,m) , and Em+1 = 1−
m∑

k=1

Ek .

It is simple to verify that Ek is positive, ⟨ψk|Ek|ψk⟩ ≠ 0, ⟨ψj|Ek|ψj⟩ = 0 (k ̸= j) and
∑m+1

k=1 Ek =
I, i.e., it is the POVM required.

To �nd this set of vectors, for each vector, move that one to the last position, apply the
Gram-Schmidt procedure, and keep only the last vector. Equivalently, as the vectors are
linearly independent, they span a subspace of the state space, and for each k, {ψj|j ̸= k} spans
a di�erent subspace. Let Pk denote the orthogonal projector to this subspace, ϕ′

k = ψk − Pkψk
and ϕk = ϕk/∥ϕk∥.
Ex. 2.65. In the basis

|0′⟩ = |0⟩+ |1⟩√
2

, |1′⟩ = |0⟩+ |1⟩√
2

the two vectors are (1, 0)T and (0, 1)T , so not the same up to relative phases.

Ex. 2.66. Let us �rst use the action of the operators,

X1Z2
|00⟩+ |11⟩√

2
=
X1|0⟩Z2|0⟩+X1|1⟩Z2|1⟩√

2
=

|1⟩|0⟩+ |0⟩|1⟩√
2

=
|10⟩+ |01⟩√

2
,

and the following scalar products,

⟨00|10⟩ = ⟨0|1⟩⟨0|0⟩ = 0× 1 = 0 , ⟨11|10⟩ = ⟨1|1⟩⟨1|0⟩ = 1× 0 = 0 ,

⟨00|01⟩ = ⟨0|0⟩⟨0|1⟩ = 1× 0 = 0 , ⟩11|01⟩ = ⟨1|0⟩⟨1|1⟩ = 0× 1 = 0 ,

which yields
(⟨00|+ ⟨11|)X1Z2(|00⟩+ |11⟩)

2
= 0 .
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Ex. 2.67. Let us consider an orthonormal basis ei in V such that e1, . . . , edimW is in W , and
the rest is in its orthogonal complement. As fi = Uei, i = 1, . . . , dimW are also orthonormal,
it is possible to extend these to an orthonormal basis fi too, and de�ne Uei = fi for i > dimW .
The operator such de�ned is de�ned on the whole space V and preserves scalar products,
therefore it is unitary.

Ex. 2.68. Any state of a composite system can be represented as a matrix of its coe�cient
in the basis |i, j⟩, i.e., |ψ⟩ = ψi,j|i, j⟩. For the state ψ = (|00⟩ + |11⟩)/

√
2, we have ψ0,0 =

ψ1,1 = 1/
√
2. This is a rank-2 matrix. For any state |a⟩|b⟩, the resulting matrix is a rank-1

matrix, which can be shown by, e.g., choosing a basis in both spaces in which |a⟩ and |b⟩ are
the �rst basis vectors, yielding (|a⟩|b⟩)0,0 = 1 and all other elements 0. As the rank of a matrix
is invariant to basis transformations, this proves that ψ is not a product state.

Ex. 2.69. It is su�cient to show linear independence, as the space is four dimensional and
there are four vectors. This follows from orthonormality, and that is shown as follows,

⟨00′|00′⟩ = 1

2
(⟨00|00⟩+ ⟨00|11⟩+ ⟨11|00⟩+ ⟨11|11⟩) = 1

2
(1 + 0 + 0 + 1) = 1 ,

⟨00′|01′⟩ = 1

2
(⟨00|00⟩+ ⟨11|00⟩ − ⟨00|11⟩ − ⟨11|11⟩ = 1

2
(1 + 0− 0− 1) = 0 ,

⟨00′|10′⟩ = 1

2
(⟨00|10⟩+ ⟨00|01⟩+ ⟨11|10⟩+ ⟨11|01⟩) = 1

2
(0 + 0 + 0 + 0) = 0 ,

⟨00′|11′⟩ = 1

2
(⟨00|01⟩ − ⟨00|10⟩+ ⟨11|10⟩ − ⟨11|01⟩) = 1

2
(0− 0 + 0− 0) = 0 ,

⟨01′|01′⟩ = 1

2
(⟨00|00⟩ − ⟨00|11⟩ − ⟨11|00⟩+ ⟨11|11⟩) = 1

2
(1− 0− 0 + 1) = 1 ,

⟨01′|10′⟩ = 1

2
(⟨00|10⟩+ ⟨00|01⟩ − ⟨11|10⟩ − ⟨11|01⟩) = 1

2
(0 + 0− 0− 0) = 0 ,

⟨01′|11′⟩ = 1

2
(⟨00|01⟩ − ⟨00|10⟩ − ⟨11|01⟩+ ⟨11|01⟩) = 1

2
(0− 0− 0 + 0) = 0 ,

⟨10′|10′⟩ = 1

2
(⟨10|10⟩+ ⟨10|01⟩+ ⟨01|10⟩+ ⟨10|10⟩) = 1

2
(1 + 0 + 0 + 1) = 1 ,

⟨10′|11′⟩ = 1

2
(⟨01|01⟩ − ⟨01|10⟩+ ⟨10|01⟩ − ⟨10|10⟩) = 1

2
(1− 0 + 0− 1) = 0 ,

⟨11′|11′⟩ = 1

2
(⟨01|01⟩ − ⟨01|10⟩ − ⟨10|01⟩+ ⟨10|10⟩) = 1

2
(1− 0− 0 + 1) = 1 ,

where we used the notation |i, j′⟩ to denote the Bell basis elements corresponding to the two
classical bits i, j as shown in eqs. (2.134-2.137).

Ex. 2.70. Bell states each have the form (see the notation in Soln. 2.69)

ψ =
|ij⟩ ± |̄ij̄⟩√

2
,

where we have used an overbar to denote the negation of the corresponding bit. As a result,
evaluating an operator of the form E ⊗ I in such a state yields

(E ⊗ I)ψ =
1√
2
(Eii|ij⟩+ Eīi |̄ij⟩ ± Eīi|ij̄⟩ ± Eī̄i |̄ij̄⟩) ,
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and when multiplying this vector with ψ, one obtains

⟨ψ|E ⊗ I|ψ⟩ = 1

2
(⟨ij| ± ⟨̄ij̄|)(Eii|ij⟩+ Eīi |̄ij⟩ ± Eīi|ij̄⟩ ± Eī̄i |̄ij̄⟩) = Eii + Eī̄i ,

independently of i and j and the sign.
If Eve intercepts Alice's qubit, she can only perform local measurements, i.e., with operators

of the form {Mm ⊗ I}, and so the probabilities of the outcomes are

p(m) = ⟨ψ|M †
mMm ⊗ I|ψ⟩ ,

independent of which Bell state the system was in, therefore, she cannot distinguish the states.

Ex. 2.71. Let ρ =
∑

j pj|j⟩⟨j| be the spectral decomposition of the density operator. As ρ is

positive and Tr ρ =
∑

j pj = 1, 0 ≤ pj ≤ 1 for all j, so p2j ≤ pj, and either there is one j = j0
for which pj = 1 and all of them are 0, or pj < 1 for all j. In the latter case p2j < pj. Then

Tr ρ2 = Tr
∑

j,k

pjpj|j⟩⟨j||k⟩⟨k| = Tr
∑

j

p2j |j⟩⟨j| =
∑

j

p2j ≤
∑

j

pj = 1 ,

and equality only holds when there is a pj0 = 1, i.e., when the state is pure, ρ = pj0 |j0⟩⟨j0|.

Ex. 2.72. (1) Let ρ be a density matrix, i.e., it is a positive operator with Tr ρ = 1. Then let
T = ρ − I/2, so TrT = Tr ρ − Tr I/2 = 0. A basis on the space of traceless Hermitian 2 × 2
matrices is the set of the Pauli matrices, so it may be so expanded, T = (1/2)r⃗ · σ⃗, yielding

ρ =
I + r⃗ · σ⃗

2
.

The eigenvalues of r⃗ · σ⃗ are ±|r| (as seen, e.g., by writing the characteristic polynomial of the
2× 2 matrix A as λ2 − λTrA+ detA), so |r| ≤ 1 must hold in order that ρ is positive.

(2) To the state ρ = I/2 corresponds r⃗ = 0, i.e., it is represented by the centre of the Bloch
sphere.

(3) Let ρ correspond to a pure state, in which case Tr ρ2 = 1, and as

(
I + r⃗ · σ⃗

2

)2

=
I + 2r⃗ · σ⃗ + (r⃗ · σ⃗)2

4
=

(1 + r2)I + 2r⃗ · σ⃗
4

,

Tr ρ2 = (1 + r2)/2 which is unity i� r = |r⃗| = 1.
(4) In sec. 1.2, the pure states were parametrised in eq. (1.3). Let us extract the vector v⃗

by using the fact that Tr σiσj = 2δij, so vi = Tr (σiρ), yielding

v1 = Trσ1ρ = ⟨ψ|σ1|ψ⟩ = sinϑ cosφ ,

v2 = Trσ2ρ = ⟨ψ|σ2|ψ⟩ = sinϑ sinφ ,

v3 = Trσ3ρ = ⟨ψ|σ3|ψ⟩ = cosϑ ,

which shows that the two descriptions of the Bloch vector agree.

Ex. 2.73. Let ρ =
∑

i λi|i⟩⟨i| and ψ =
∑

i ci|i⟩. In this case, the generalised inverse is

ρ−1 =
∑

λ−1
i |i⟩⟨i| ,
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and so
⟨ψ|ρ−1|ψ⟩ =

∑

i

⟨ψ|i⟩λ−1
i ⟨i|ψ⟩ =

∑

i

|ci|2/λi .

According to theorem 2.6, a set {pj, ψj} is an ensemble for ρ i� there is a unitary matrix u with
which √

piψi =
∑

j

uij
√
λj|j⟩ .

Let ψ1 = ψ. In this case,

∑

j

√
p1cj|j⟩ =

√
p1ψ =

∑

j

u1j
√
λj|j⟩ ,

yielding

u1j =

√
p1cj√
λj

,

and from the unitarity of u follows uu† = I, so

1

p
=
∑

j

|cj|2
λj

, p =
1

⟨ψ|ρ−1|ψ⟩ .

Constructing a minimal ensemble with ψ1 = ψ can be done as follows: �rst, we consider a matrix
whose �rst row is u1j = cj

√
λj/

√
p1, and extend this into a unitary Rank ρ × Rank ρ matrix

(that this is possible can be shown using the vectors ei and the Gram-Schmidt orthogonalisation
procedure), and let the remaining vectors in the set be the vectors given by eq. (2.167).

Ex. 2.74. If the composite system is in a state |a⟩|b⟩, its density operator is ρ = |a⟩|b⟩⟨a|⟨b,
and the reduced density operator is, using eq. (2.178),

ρA = Tr Bρ = |a⟩⟨a|Tr |b⟩⟨b| = |a⟩⟨a|⟨b|b⟩ = |a⟩⟨a| ,

which is a pure state, given by the state vector |a⟩.

Ex. 2.75. For the Bell state |00′⟩ = (|00⟩ + |11⟩)/
√

(2) (see the notation in Soln. 2.69), the
density operator is

ρ = |00′⟩⟨00′| = 1

2
(|00⟩+ |11⟩)(⟨00|+ ⟨11|) = 1

2
(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|) ,

and so

ρ1 = Tr 2ρ =
1

2
(|0⟩⟨0|+ 0 + 0 + |1⟩⟨1|) = I

2
,

and, similarly, ρ2 = I/2. For |01′⟩,

ρ = |01′⟩⟨01′| = 1

2
(|00⟩⟨00| − |00⟩⟨11| − |11⟩⟨00|+ |11⟩⟨11|) ,

therefore ρ1 = I/2 = ρ2. For |10′⟩,

ρ = |10′⟩⟨10′| = 1

2
(|01⟩⟨01|+ |01⟩⟨10|+ |10⟩⟨01|+ |10⟩⟨10|) ,
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so

ρ1 = Tr 2ρ =
1

2
(|0⟩⟨0|+ 0 + 0 + |1⟩⟨1|) = I

2
,

and

ρ2 = Tr 1ρ =
1

2
(|1⟩⟨1|+ 0 + 0 + |0⟩⟨0|) = I

2
,

and we obtain the same result for |11′⟩ by �ipping the signs of terms 2 and 3 in the brackets.
Note, that the independence of the reduced density matrices on the Bell states also follows

from Exercise 2.70, as the measurement statistics of all operators on one of the subsystems
must be the same for all the Bell states. For the |00⟩ state the result is given by eq. (2.191).

Ex. 2.76. Let us assume that the dimensions of the state spaces of the two subsystems are
dimHA = n, dimHB = m, n < m. Let us consider a larger state space H ′

A with dimH ′
A = m,

and apply the theorem there.
The vectors |j⟩|k⟩ for j > n do not appear in the expression of ψ, ajk = 0 for j > n. As a

result, ujidii = 0, and therefore in ψ =
∑

i λi|iA⟩|iB⟩, one can drop the zero eigenvalues, and
for the non-zero eigenvalues have |iA⟩ =

∑
j=1 nuji|j⟩, the sum run only over 1, . . . , n, i.e., the

vector is in the subspace corresponding to HA in H ′
A.

Ex. 2.77. The question of a triple decomposition has been considered in Ref. [1]. The main
line of the argument is that if the eigenvalues are unequal, the decomposition is unique. On
the one hand, the tripartite state space can be split into subsystem 1 and subsystems 2 and 3,
one may apply the Schmidt decomposition, and �nd a decomposition of the form

ψ =
∑

i

λi|iA⟩|iBC⟩ ,

and on the other hand, if the tripartite decomposition is possible,

ψ =
∑

i

λi|iA⟩|iB⟩|iC⟩ ,

and the two must agree, i.e., |iBC⟩ must agree with |iB⟩|iC⟩. We may therefore construct the
counterexample �backwards�, by starting with a 1-(23) decomposition in which the vectors |BC⟩
are entangled states, e.g.,

ψ = α|0⟩|01′⟩+ β|1⟩|10′⟩ ,
using Bell states (see Soln. 2.69 for the notation), and α ̸= β, |α|2 + |β|2 = 1.

Ex. 2.78. Let ψ = |ψA⟩|ψB⟩. This is already a Schmidt decomposition with Schmidt number
1. In the other direction, a state with Schmidt number one is ψ = λ1|1A⟩|1B⟩ is also clearly a
product state.

Also, if ψ is a product state, clearly ψA and ψB are pure states. For the other direction, let
us assume that ψ has at least Schmidt number 2, i.e., in the sum

ψ =
∑

i

λi|iA⟩|iB⟩

there are two or more nonzero λi's. In this case, the reduced states are

ρA = Tr B
∑

i,j

λiλj|iA⟩|iB⟩⟨jA|⟨jB| =
∑

i

λ2i |iA⟩⟨iA| ,

ρB = Tr A
∑

i,j

λiλj|iA⟩|iB⟩⟨jA|⟨jB| =
∑

i

λ2i |iB⟩⟨iB| ,
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as Tr |iB⟩⟨jB| = ⟨jB|iB⟩ = δij and Tr |iA⟩⟨jA| = ⟨jA|iA⟩ = δij. In order that the two ρA, ρB are
pure states, both ρA and ρB must be rank-1 matrices, there can neither be two di�erent |iA⟩
nor |iB⟩ vectors.
Ex. 2.79. The Schmidt decomposition is found by extracting from the states the matrix a,
and then performing an SVD on these matrices. The matrices are as follows,

ψ1 =
|00⟩+ |11⟩√

2
, a1 =

(
1

1

)

which is already in the Schmidt decompositon form (a is diagonal),

ψ2 =
|00⟩+ |01⟩+ |10⟩+ |11⟩

2
, a2 =

(
1 1
1 1

)
,

ψ3 =
|00⟩+ |01⟩+ |10⟩√

3
, a3 =

(
1 1
1 0

)
.

The SVD of the matrices yields

a2 = U2D2V2 , D2 =

(
0

2

)
U2 = V †

2 =
1√
2

(
1 1
−1 1

)
,

yielding

|0A⟩ =
∑

j

(U2)j0|j⟩ =
1√
2
(|0⟩ − |1⟩) , |1A⟩ =

∑

j

(U2)j1|j⟩ =
1√
2
(|0⟩+ |1⟩) ,

and

|0B⟩ =
∑

j

(V2)j0|j⟩ =
1√
2
(|0⟩+ |1⟩) , |1B⟩ =

∑

j

(V2)j1|j⟩ =
1√
2
(|0⟩ − |1⟩) ,

and similarly (by �nding left and right eigenvalues)

a3 = U3D3V3 , D3 =

(√
5+1
2

−
√
5+1
2

)
,

and

U3 = V †
3 =




2√√
5−5√
5−3

(
√
5−1)

−
√
2√√
5+5

√√
5−3√
5−5

√
5+1√

2
√
5+10

,




and |iA,B⟩ (i = 0, 1) as above.

Ex. 2.80. Te equations below eq. (2.204) de�ning the new bases on the two subsystem Hilbert
spaces, |iA⟩ =

∑
j uji|j⟩ and |iB⟩ =

∑
k vik|k⟩ may be used to de�ne unitary operators by

|iA⟩ = U(ψ)|i⟩ , |iB⟩ = V (ψ)|i⟩ .
Let us apply the inverse to ψ,

(U(ψ)⊗ V (ψ))†|ψ⟩ =
∑

i

λi|iA⟩|iB⟩ =
∑

i

λiU(ψ)
†|iA⟩ ⊗ V (ψ)†|iB⟩

=
∑

i

λiU(ψ)
†U(ψ)|i⟩ ⊗ V (ψ)†V (ψ)|i⟩ =

∑

j

λj|i⟩|i⟩ ,
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which only depends on the Schmidt coe�cients of the state ψ. This lets us de�ne

U = U(ψ)U(φ)† , V = V (ψ)V (φ)† ,

so that
(U ⊗ V )φ = (U(ψ)⊗ V (ψ))(U(φ)† ⊗ V (φ)†)φ

= (U(ψ)⊗ V (ψ))
∑

j

λj|i⟩|i⟩ = ψ .

To verify that U(ψ) and V (ψ) are both unitary, note that they take orthonormal bases into
orthonormal bases.

Ex. 2.81. Let us use that basis in the subsystem A which diagonalises the density matrix ρ,
i.e.,

ρ =
∑

j

pj|jA⟩⟨jA| ,

and write the puri�cations as

ψ =
∑

jk

ψj,k|jA⟩|kR⟩ , φ =
∑

jk

φj,k|jA⟩|kR⟩ .

The condition for a puri�cation is that

ρ = Tr 2|ψ⟩⟨ψ| = Tr 2

∑

j,k,ℓ,m

ψj,kψ
∗
ℓ,m|jA⟩|kR⟩⟨ℓA|⟨mR| =

∑

j,k,ℓ

ψj,kψ
∗
ℓ,k|jA⟩⟨ℓA| ,

and similary for φ, yielding
∑

k

ψj,kψ
∗
ℓ,k = pjδj,ℓ =

∑

k

φj,kφℓ,k .

De�ning uj,k = p
−1/2
j ψj,k, this yields

∑
k uj,ku

∗
ℓ,k = δj,ℓ, i.e., u is a unitary matrix, and so is v

de�ned as vj,k = p
−1/2
j φj,k and we may write

ψ =
∑

j,k

√
pj|jA⟩uj,k|kR⟩ =

∑

j

√
pj|jA⟩U |jR1⟩ = (I ⊗ U)

∑

j

√
pj|jA⟩|jR1⟩ ,

φ =
∑

j,k

√
pj|jA⟩vj,k|kR⟩ =

∑

j,k

√
pj|jA⟩U |jR2⟩ = (I ⊗ V )

∑

j

√
pj|jA⟩|jR2⟩ ,

The operator de�ned byW |jR2⟩ = |jR1 is also unitary, as it maps the elements of an orthonormal
basis into those of another, so

UR = UWV †

has the desired property, (I ⊗ UR)φ = ψ.

Ex. 2.82. (1) The proof is basically eqs. (2.207�2.2.211).
(2) Measuring |i⟩ in the R-basis corresponds to a projective measurement with measurement

operators I ⊗ Pi with Pi = |i⟩⟨i|, yielding probabilities

p(i) =
∑

k,ℓ

√
pkpℓ⟨k|⟨ψk|(I ⊗ Pi)|ψℓ⟩|ℓ⟩ =

∑

k,ℓ

√
pkpℓ⟨k|⟨ψk|(I ⊗ |i⟨⟩i|)|ψℓ⟩|ℓ⟩

=
∑

k,ℓ

√
pkpℓδk,ℓδi,ℓ = pi .
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The corresponding state of system A is

Pi
∑

k

√
pk|ψk⟩|k⟩√∑

k,l

√
pkpℓ⟨k|⟨ψk|Pi|ψℓ⟩|ℓ⟩

=
(I ⊗ |i⟩⟨i|)∑k

√
pk|ψk⟩|k⟩√∑

k,l

√
pkpℓ⟨k|⟨ψk|(I ⊗ |i⟩⟨i|)|ψℓ⟩|ℓ⟩

=

∑
k

√
pk|ψk⟩δik√∑

k,ℓ

√
pkpℓδk,ℓδk,iδi,ℓ

= ψk .

(3) If |AR⟩ is any puri�cation, we know that it is unitary equivalent, with an operator
I⊗UR, to the puri�cation condidered in (1), (2) (see Excer. 2.81). The measurement operators
are then

P ′
i = (I ⊗ UR)Pi(I ⊗ U †

R).

These are also rank-1 projectors, i.e., P ′
i = |i′⟩⟨i| and the sought states are |i′⟩.

Pr. 2.1. Let us expand the function f in a Taylor series,

f(x) =
∞∑

k=0

1

k!
f (k)(0)xk ,

and note that n⃗ · σ⃗ has the property that (n⃗ · σ⃗)2 = (niσi)
2 = ninkσiσk = nink(δik+iϵikℓσℓ) = 1,

so

f(θn⃗ · σ⃗) =
∑

k

1

(2k)!
f (2k)(0)θ2k + θn⃗ · σ⃗

∑

k

1

(2k + 1)!
f (2k+1)(0)θ2k+1 ,

and, similarly, (−x)2k = x2k, (−x)2k+1 = −(−x)2k+1, so

f(θ) + f(−θ)
2

=
∑

k

1

(2k)!
f (2k)(0)θ2k ,

and
f(θ)− f(−θ)

2
=
∑

k

1

(2k + 1)!
f (2k+1)(0)θ2k+1 ,

therefore, comparison yields the desired result

f(θn⃗ · σ⃗) = f(θ) + f(−θ)
2

I +
f(θ)− f(−θ)

2
n⃗ · σ⃗ .

Pr. 2.2. (1) Let us work in the basis where ψ is transformed to its Schmidt form,

ψ =
∑

i

λi|iA⟩|iB⟩ ,

and compute the partial trace

ρA = Tr 2|ψ⟩⟨ψ| =
∑

i,j

λiλj|iA⟩⟨iA|⟨iB|jB⟩ =
∑

i

λ2i |iA⟩⟨iA| ,

where we used ⟨iB|jB⟩ = δij. It is clear that the rank of ρA is the Schmidt number of ψ.
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(2) By applying Gram-Schmidt orthogonalisation to the vectors αj and to βj we obtain an
orthonormal basis in the space spanned by them. The resulting expansion is of the form

ψ =
∑

i,j

aij|i⟩|j⟩ ,

and the Schmidt-decomposition is obtaine from the singular value decomposition of the matrix
a, and the number of non-zero singular values is maximally that of the smaller of the number
of rows and columns of a, both of which are the number of linearly independent vectors among
αi and βi, repsectively.

(3) Again, writing all the state vectors in the form

ψ =
∑

i,j

ψi,j|i⟩|j⟩ , φ =
∑

i,j

φi,j|i⟩|j⟩ , γ =
∑

i,j

γi,j|i⟩|j⟩ ,

the Schmidt number becomes the number of the non-zero singular values of the corresponding
matrices ψij, φi,j and γi,j. The rank is the dimension of the space spanned by the columns of
the matrices, it is clear that the rank of the matrix γ is Rank γ = Rank βγ = Rank(ψ− αφ) ≤
Rankψ+Rankφ, yielding Sch(γ) ≤ Sch(ψ)+Schφ, or Sch(ψ) ≥ Sch(γ)−Sch(φ). By exchanging
the roles of φ and γ we obtain the desired inequality,

Sch(ψ) ≥ |Sch(φ)− Sch(γ)| .

Pr. 2.3. To calculate
(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2 ,

note that any of these operators square to I, as for any v⃗, (v⃗ · σ⃗)2 = v2I, so the 4I equals the
diagonal terms. To evaluate the cross term, note that

(A⊗B)(C ⊗D) = AC ⊗BD ,

and if the letter on one side of the tensor product agree, there an identity operator resutlts.
These terms are, eq., Q⊗ SR⊗ S = QR⊗ I, and these drop out. The remaining terms are

4I +QR⊗ ST −RQ⊗ ST +RQ⊗ TS −QR⊗ TS ,

which are the terms arising when expanding 4I + [Q,R]⊗ [S, T ], thereby prooving eq. (2.33).
For any operator A, ⟨A⟩ ≤ λmax(A). Applying this to the operator in the brackets in the

expression we started with yields

⟨(Q⊗ S +R⊗ S +R⊗ T −Q⊗ T )2⟩ = ⟨4I + [Q,R]⊗ [S, T ]⟩ ≤ 8 ,

where we have used, e.g., that

[Q,R] = [q⃗ · σ⃗, r⃗ · σ⃗] = 2i(q⃗ × r⃗) · σ⃗ ,

where q⃗ × r⃗ is the vector product of two unit vectors, therefore its length is at most 1, so the
maximal eigenvalue of [Q,R] is also at most 1.

For any operator A, σ2
A = ⟨A2⟩ − ⟨A⟩2, yielding

⟨A⟩ ≤ |⟨A⟩| , ⟨A⟩2 = ⟨A2⟩ − σ2
A ≤ ⟨A2⟩ ,

Applying this inequality to the operator Q⊗ S +R⊗ S +R⊗ T −Q⊗ T , and plugging in our
result for its square yields Tsirelson's inequality.
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3 Introduction to computer science

Ex. 3.1. I do not think it is possible to verify if a natural process evaluates a function non-
computable with a Turing machine. We can only verify what it evaluates for a �nite value of
inputs, and there de�nitely exists a Turing machine which gives the same results for thos (e.g.,
with a lot of states containing a lookup table). We might conjecture that a process evaluates
a non-computable function if we try to model it with Turing machines and then every time we
test it on a new input the model has to be changed.

Ex. 3.2. Turing machines can be numbered as follows: we put them into a table, where in
the ith column are Turing machines wiht an alphabet of length i and in the jth row those of j
states, and in each cell of the table, behind one another those with their programs alphabetically
sorted.

Inputs can also be assigned a number. If in the kth cell of the input tape there is the akth
element of the alphabet for a machine, we assign that input the number pa11 p

a2
2 · · · · · pann where

n is the length of the given input and pj is the jth prime number. This gives a natural number,
and as the prime factorisation is unique it is a 1:1 mapping of possible inputs to real numbers.

Ex. 3.3. Let us construct the Turing machine as follows: we take a two-tape Turing machine,
with states r, ℓ for moving left, ℓ′ for rewinding tape 2 and c for copying, and the following
program:

⟨qs, ▷, ▷, r, ▷, x,+1,+1⟩ ,
⟨r, x, y, r, x, y,+1, 0⟩ , ∀x ̸= b, y

⟨r, b, y, ℓ, b, y,−1, 0⟩ , ∀y
⟨ℓ, x, y, ℓ, b, x,−1, 1⟩ , ∀x ̸= ▷, y

⟨ℓ, ▷, ▷, ℓ′, ▷, ▷, 1, 1⟩
⟨ℓ′, x, y, ℓ′, x, y, 0,−1⟩ , ∀x, y ̸= ▷

⟨ℓ′, x, ▷, c, x, ▷, 0, 1⟩
⟨c, x, y, c, y, b,+1,+1⟩ , ∀x, y ̸= b

⟨c, x, b, h, x, b, 0, 0⟩ , ∀x
The machine starts, it switches to state r, moves the �rst tape to the end of the input without
moving the second tape, and when reaches a blank cell, switches to state ℓ. In that state, it
moves �rst tape left, the second one right, and copies the number on tape 0 to tape 1 backwards
until it reaches the start position (marked ▷), also erasing the input. Then it switches to state
ℓ, and rewinds tape 2, until it reaches the start position on that one, and then switches to state
c copies tape 2 onto 1 until it reaches a blank on tape 2, and �nally halts.

Ex. 3.4. Let us use a three tape Turing machine, get the input on tapes 1 and 2, both with
the least signi�cant bit �rst, and leave the result on tape 3, also in the same order. (In the
previous exercise we have seen that it is possible to reverse the bits, and to copy the result from
tape 3 to tape 1). The program is

⟨qs, ▷, ▷, ▷, qa, ▷, ▷, ▷, 1, 1, 1⟩ ,
⟨qa, x, y, z, qa, x, y, x+ y mod 2, 1, 1, 1⟩ , ∀x ̸= b, y ̸= b

⟨qa, x, b, z, qa, x, b, x, 1, 0, 1⟩ ,∀y ̸= 0

⟨qa, b, y, z, qa, b, y, y, 0, 1, 1⟩ ,∀x ̸= 0

⟨qa, b, b, z, h, b, b, z, 0, 0, 0⟩ .
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Ex. 3.5. This is known as the blank space halting problem. The proof is indirect, we shall
assume that there is a solution to the blanks pace halting problem, i.e., a function hb(x) which
is 0 if the Turing machine with Turing number x does not halt for an epty input, and 1 if it does.
We shall show that if this was true then the function h in Box 3.2 would also be computable.
To show this, to any Turing number x and input w we construct a new Turing machine with
the program:

T_w(x):

erase tape

write w

run T(x) on input w

It is clear that this is a Turing machine, and if hb was computable, so was h.

Ex. 3.6. Let us construct the machine used in the construction in Box 3.2, replacing h with
hp. If for this machine hp(x) is true, then in more then 1/2 of the runs, y is true, and the
machine runs forever, contradicting hp(x) being true. If hp(x) is false, then in more than 1/2
of the rund, y is false, and the machine stops. Again, this contradicts hp(x) being true.

Ex. 3.7. No. We may use the same proof as for the Turing machine, i.e., construct an oracle
machine, and replace h(x) with the function that computes that the oracle machine number x
halts.

Ex. 3.8. To show that nand can be used to simulate all other gates, let as proceed as follows:
note that

xnand x = x̄ ,

and x ∧ x = x. This may be used to show that

(xnand y)nand (xnand y) = x ∧ y ,
constructing the and gate. To produce the xor gate, note, that

x ∨ y = x̄ ∧ ȳ
and

xxor y = (x ∨ y) ∧ (x ∧ y) ,
and thes only contained operations that we have already constructed (and and not and or

in the latter case).

Ex. 3.9. 1. If f(n) isO(g(n)), then there exist n0 and c > 0 such that for n > n0, f(n) ≤ c·g(n).
This, however, means that for the smae n0, g(n) ≥ (1/c)f(n), i.e., g(n) is Ω(f(n)) with the
constant c′ = 1/c.

2. If, on the other hand, g(n) is Ω(f(n)), by de�nition, that means, that there are constants
n0 and c > 0 such that for n > n0, g(n) ≥ cf(n). This, however, means that for the same n0,
n > n0, f(n) ≤ (1/c)g(n), i.e., f(n) os O(g(n)) with constant 1/c.

Ex. 3.10. Let g(n) = akn
k + · · · + a1n + a0. What we need to show is that there exist c and

n0 that for n > n0, f(n) ≤ cnℓ for all ℓ > k.
We shall �rst note that for any m > 0, and n > 1, nm > nm−1, so amn

m + am−1n
m−1 >

(am + am−1)n
m. This way, we may eliminate lower powers by induction, and see that g(n) <

(ak + ak−1 + · · ·+ a0)n
k < (ak + ak−1 + · · ·+ a0)n

ℓ for ℓ > k.
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Ex. 3.11. It su�ces to show that there is an n0 that for n > n0, log n < n. This already holds
for n = 2, and we shall show that log n − n is monotonously decreasing (for large enough n),
by looking at its derivative, (log x− x)′ = 1/(x ln 2)− 1 < 0 for x > 2.

Ex. 3.12. As for n > 2k, nlogn > nk, nk is O(nlogn). On the other hand, assuming that nlogn is
O(nk) would mean assuming the existence of n0, k and c such that nlogn ≤ cnk for all n > n0.
On the other hand, for n > 2k+1, nlogn > nk+1 and for large enough n, nk+1 > cnk.

Ex. 3.13. As nlogn = 2(logn)
2
and cn = 2n log c, all we need to show is that n log c > (log n)2

for n large enough, or, equivalently, 2logn log c > (log n)2, which is clear from the fact that the
Taylor series of an exponential contains all powers with positive coe�cients.

Ex. 3.14. For n > n′
0, e(n) ≤ c′f(n) and for n > n′′

0, g(n) ≤ c′′h(n). It follows that for
n > n0 = max{n′

0, n
′′
0}, e(n)g(n) ≥ c′c′′f(n)h(n).

Ex. 3.15. At each compare-and-swap operation we exchange or do not exchange 2 elements in
the list. Let us assume that for a given algorithm �nishing in at most k steps, there exist such
orderings of the list, that in each step, for one of them, the comparison results in a swap, and
in the other one, no swap is done. This means, that running the steps backward, we started
with the ordered list, and in each step, there is a branching, and therefore, in the �rst step,
we obtain 2 new orderings, in the second, 4, and in the end, 2k. This means, that some of the
k! < 2k orderings were not visited, the algorithm could not have sorted those in k steps.

Ex. 3.16. The number of Boolean functions of n bits is 22
n
, because the value of the most

general function may be prescribed separately to each possible input, and this value may be
either true or false.

Let us assume that we have a circuit with k gates and n wires. Then for each gate, we need
to choose its input wires, either from one of the other gates or from the original n wires, yielding
∼ (n+ k)2 possibilities, and the type of the gate, which is the number of 2-bit functions, 4. So
we have (4(n+ k)2)k functions.

To be able to construct all the 22
n
Boolean functions, we therefore need to satisfy

[4(n+ k)2]k ≥ 22
n

,

or taking a logarithm and neglecting constants,

k ≥ 2n

log n
.

Ex. 3.17. If we could �nd the factors of a number in polynomial time, all we needed to do was
compare the smallest factor with the input ℓ to see if the number has a factor smaller than ℓ.

If we could solve the factorisation decision problem in polynomial time, it would be possible
to factorise the number in polynomial time by �nding the smallest factor using a logarithmic
search, dividing the number by that, and repeating this until all factors are found. The number
of prime factors of a number are at most logarithmic (all factors are ≥ 2, so dividing them at
least halves the number).

Ex. 3.18. If P agreed with NP than for any NP decision problem there was a polynomial
time Turing machine that decided the problem. This machine can then be used to decide the
relevant witness veri�cation for both being in the language or for not being in the language
by simply running it after a machine that just copies the input on a second tape and runs the
machine on that one.
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Ex. 3.19. A polynomial (actually, linear) time algorithm for the reachability problem can be
constructed as follows: take one of the two vertices that need to be veri�ed if they are reachable
from each other. In each step, add one of their neighbours to a list, ad cross them o� from the
list of all vertices. When we ran out of neighbours, add the neighbours of the neighbours, and
so on. If the second vertex is added, it is reachable. If at one point we run out of neighbours
(i.e., all the neighbours of the vertices in the list of visited vertices are already crossed out
from the list of all vertices) then the second point is not reachable. As in each step we add a
vertex to the list of reachable vertices, the algorithm ends in at most as many steps as there
are vertices in the graph.

Ex. 3.20. It is obvious that if the graph has an Euler cycle then all vertices are of even rank.
Starting from one vertex along the cycle we leave that vertex, then move to another one, leave
that one, move to another one, and so on. For each arrival at a vertex there is also a departure,
each time adding two to the rank of the vertex.

If we have a connected graph with all vertices of even rank, we may construct the Euler cycle
using Hierholzer's algorithm. We start from a vertex, and always move to a next one along an
edge. It is not possible to get stuck as that would only be possible at a vertex with an odd rank.
This is done as long as we reach the original vertex. After this has been done checks recursively,
along this cycle, if there are edges left. Along those the algorithm is repeated, always inserting
the new cycle into the old one. As in each step at least two edges are added, and the number
of edges is O(n2), n denoting the number of vertices, the algorithm is polynomial time.

Ex. 3.21. L1 being reducible to L2 means that there is a mapping R1 such that for any string x
in the alphabet of L1, R1(x) is in L2 i� x is in L1, and R1 is calculable with a Turing machine in
polynomial time. In this case, the length of the string R1(x) must also be polynomial, otherwise
printing it would take longer than polynomial time. The reducibility of L2 to L3 means the
existence of a similar mapping R2. Therefore, R := R2 ◦ R1 is a mapping reducing L1 to L3,
and it is computable in polynomial time, as R1(x) is, and its length is polynomial, therefore
R2(R1(x)) is computable in polynomial time in the length of R1(x), and a polynomial of a
polynomial is polynomial, therefore, it is computable in polynomial time in the length of x as
well.

Ex. 3.22. Using the results in the previous exercise, if L is complete, that means that for any
L1, there is a mapping R1 reducing it to L. The reducibility of L to L′ means that there is
a mapping R′ reducing L to L′. In that case, for the language L1 is reduced to L′ using the
mapping R′

1 := R′ ◦R1.

Ex. 3.23. 1. To show that sat is NP, we need to show that a witness to it can be veri�ed
in polynomial time by a Turing machine. To do this, we construct a Turing machine that �rst
evaluates the inner brackets, writes it on the tape next to the input, then the next brackets,
and so on. As there are a �nite number of operations in the formula, this ends in a polynomial
time in the number of operations (number of such steps is linear, and there is bookkeeping to
know where to get the results from).

2. To show that sat is NP-complete, we need to reduce another NP-complete problem to
it. A Boolean circuit can be represented by a formula: each intermediate gate corresponds to
a sub-expression in an inner bracket, and the last one is the result. This way, the equivalence
of sat and csat is demonstrated.
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Ex. 3.24. A k-variable formula in the 2-conjunctive normal form is

(y1 ∨ y2) ∧ · · · ∧ (y2n−1 ∨ y2m) ,

where all the y's may be taken from x1, . . . , xk and x̄1, . . . , x̄k. The directed graph constructed
encodes the relation �yi being 0 means yj has to be 1 for the formula to be true�. If there is a
path connecting xi to x̄i, that means the formula cannot be satis�ed.

For a directed graph, reachability can be decided in polynomial time. We list the vertices
v1, . . . , vN . We start with the starting vertex vm, and in the �rst step, list the vertices that are
connected to it. We cross them out from the list. In the next steps, we list vertices connected
to all vertices in our list of reachable vertices. The procedure ends, if either the vertex whose
reachability is the question is reached or there are no vertices to be added. As in each step
either at least one vertex is checked or the procedure ends, this ends in polynomial time.

Ex. 3.25. Let us �rst consider how an algorithm can take a given amount of time. If the
algorithm does stop, it has to take account of its progress, so the number of possible data
stored in the space used multiplied by the number internal states must be at least as much as
the number of steps.

If an algorithm is in PSPACE then for an input of length n it uses at most p(n) bits of
space, wher p is some polynomial. The number of possible data values stored in k bits of storage
is 2k, so in this case, the number of possible data values is 2p(n), and with ℓ internal states, the
total number of (internal and storage) states is ℓ2p(n) which is exponential, if the polynomial is
of order N , then the algorithm uses time O((2N)n).

Ex. 3.26. Let us assume that the Turing machine has ℓ internal states. Another part of the
full state of the machine is position of the input tape, this is n states, and we have k log n
bits on the second tape, which amounts to 2k logn = nk states, so the total number of states is
ℓnnk = ℓnk+1. The machine has to keep track of which step it is in, so the number of steps
in the execution must be less than the number of total states. This way we have shown that
L ⊆ P.

Ex. 3.27. It is clear that the algorithm constructs a vertex cover, as only such edges are
removed from E ′ that at least one of whose endpoints are in the cover. It also contains at most
double the size of a minimal vertex cover as a vertex cover must include at least one endpoint
of each edge, and this includes for some edges both.

Ex. 3.28. If correctly accepting or rejecting a word x has probability 1/2 < k < 1, then it is
possible to repeat the test ℓ times and accept the majority as the result. This is only a constant
multiplier. According to Condorcet's jury theorem the probability of the repeated runs yielding
correct results is above 3/4 for ℓ large enough, and what is large enough only depends on k,
not the length of the input.

Ex. 3.29. The Fredkin gate can be expressed with the formulae

a′ = (c̄ ∧ a) ∨ (c ∧ b) ,
b′ = (c̄ ∧ b) ∨ (c ∧ a) ,
c′ = c .

Applying another Fredkin gate with inputs a′, b′, c′ and outputs a′′, b′′, c′′ we obtain

c′′ = c′ = c ,

26



so
a′′ = [c̄ ∧ [(c̄ ∧ a) ∨ (c ∧ b)]] ∨ [c ∧ [(c̄ ∧ b) ∨ (c ∧ a)]]

= c̄ ∧ c̄ ∧ a ∨ c̄ ∧ c ∧ b ∨ c ∧ c̄ ∧ b ∨ c ∧ c ∧ a = c̄ ∧ a ∨ c ∧ a = (c̄ ∨ c) ∧ a = a ,

and similarly

b′′ = [c̄ ∧ [(c̄ ∧ b) ∨ (c ∧ a)]] ∨ [c ∧ [(c̄ ∧ a) ∨ (c ∧ b)]]
= c̄ ∧ c̄ ∧ b ∨ c̄ ∧ c ∧ a ∨ c ∧ c̄ ∧ a ∨ c ∧ c ∧ b = c̄ ∧ b ∨ c ∧ b = (c̄ ∨ c) ∧ b = b .

Ex. 3.30. Draw the possibilities, e.g., if a = 1 and all others 0, it moves u,d,u,u,u,d,d,d,
yielding a′ = 1, and all others 0 (as there is one ball).

If a = 1, b = 0 and c = 1, the movements of the a ball are u,d,u and the c ball are u, d, d,
d and then a collision happens, and they swap direction, a ball moves d, c moves u, d, another
collision happens, a moves d, u, c moves u, d, another collision, a moves d, u, c moves u, d,
another collision, a moves d, u, d, u, u and exits at b′, c moves u, u, u, and exits at c′.

The other possibilities may be analysed similarly.

Ex. 3.31. A (not necessarily optimal) solution is to express the outputs of the half-adder az
x⊕ y = (x∨ y)∧ x ∧ y and c = x∧ y and express the or gates as in Fig. 3.16, and the or and
not gates using x∨y = x̄ ∧ ȳ. We then apply cnots to extend it to add it to a fourth register,
and then add the inverse of the half-adder part expressed with Fredkin gates. The inverse is
easily constructed using the Fredkin gates in reverse order, as the reverse of the Fredkin is its
inverse.

Ex. 3.32. The following two �gures show the simulation of a Fredkin gate with 3 To�oli
gates, and that of a To�oli gate with four Fredkins. Control bits are marked with dots, the
exchange/cnot bits are marked with crosses/opluses.

and

0

1

0

0

1

Pr. 3.1. (1) Let us assume that f(n) is a computable function, i.e., there is such a Turing
machine that for the input n on its tape it produced f(n) on its tape when it halts. We wish
to show that it is possible to evaluate this function on a Minsky machine.

The Turing machine has some internal states. We may enumerate the internal states,
and store the state in one register. The interesting part is storing the values stored on an
in�nite amount of tape (but a �nite alphabet) in a �nite number of registers (capable of storing
arbitrarily) large numbers. Let the alphabet consist of k symbols 0, 1, . . . , k − 1, then a �nite
word a1a2 . . . aℓ on the tape can be stored in a register as a1 + a2k+ · · ·+ aℓk

ℓ−1. The position
of the head may be stored in another register. For simulating the Turing machine what remains
to be done is to implement as a Minsky machine the change of state and the writing on the
tape as a change according to tape position.
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(2) Representing the Minsky machine on a Turing machine: if we have k registers, we choose
a Turing machine with k tapes and write the numbers on the tape in binary. What is needed
is the program to increment/decrement.

Pr. 3.2. To simulate a Minsky machine with a vector game, in addition to the values of the
registers we need to keep track of the state of the machine to enforce the right vector being
used. To do this, we add two additional components to the vector. The �increment� instruction
going from state m to n is encoded in the vector (0, . . . , 0, 1, 0 . . . , 0,−m,n) where the 1 is in
the component corresponding to the register to be incremented, and the decrement operation
is encoded in two vectors, (0, . . . , 0,−1, 0, . . . , 0,−m,n) and (0, . . . , 0,−m, p). The vectors are
then listed in the order of decreasing m. To the beginning of the list we add (0, . . . , 0, 1,−1).
See Ref. [2, 3].

Pr. 3.3. For a fractran program, we may construct a vector game. The input 2n corresponds
to a vector (n, 0, . . . , 0), and a multiplication with a rational qi to the vector (k1, k2, . . . , 0) where
ki are the exponents of the prime factors of the rational qi. This way any vector machine can
be represented as a fractran program [2]

Pr. 3.4. The above problems show that an algorithm that would decide if a fractran

program reaches 1 would be equivalent to the decision problem.

Pr. 3.5. For any 2-bit reversible gate, the output part of a truth table is a permutation of

the input part, and so, in any column, there are two zeros and two ones. This way,

(
4
2

)
= 6

binary functions can be computed, and these may be listed: x, y, xxory and their negations,
i.e., the gates that one can construct are also constructable from the not and xor gates.

The not and xor gates do not form an universal set. By induction over the number of
gates, one may show that the output of a network containing only these gates either does not
depend on each input bit or becomes negated when that bit is negated. The logical or does not
have this property, so that cannot be implemented with reversible two-bit gates.

The To�oli gate is universal, therefore, if that could be implemented with reversible two-bit
gates, then everything could be implemented with these too, and we have already seen that
this is not the case.

Pr. 3.6. If the graph G(V,E) has a Hamiltonian cycle, the length of that is |V |. A TSP
optimal solution in the graph then has also length |V |. The approximator must return a TSP
solution which is at most r times worse then the optimal, and just one edge chosen not in the
original graph would yield a TSP solution at least of cost ⌈r⌉|V |+1. So if the approximator is
in P, it solves the NP-complete hc in polynomial time, which would prove P = NP.

Pr. 3.7. See Ref. [4]. A three-tape Turing machine is constructed as the reversible extension
of a single-tape machine. The bounds for time and space are 4t(x)+4o(x)+4 and s(x), t(x)+1
and o(x) + 2 on the three tapes, where o(x) ≤ s(x) is the size of the output. The main idea is
to keep a history on the second tape, and a copy of the output on the third.
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Part II

Quantum computation

4 Quantum circuits

4.1 Quantum algorithms

4.2 Single qubit operations

Ex. 4.1. We have calculated the normalised eigenvectors of the Pauli matrices in ex. 2.11. We
shall now calculate the corresponding points on the Bloch sphere.

The case of σ0 = I is trivial, all vectors (all points) all eigenvectors. We may choose the
two eigenvectors of σ3, for example.

The case of σ3 is as follows: the eigenvector corresponding to eigenvalue 1 is |0⟩, which
corresponds to cos(θ/2) = 1, so θ = 0 and ϕ arbitrary. The other eigenvector is |1⟩, similarly
corresponding to θ = π, and, as the coe�cient of |0⟩ vanishes, the relative phase becomes an
overall phase, ϕ is arbitrary again.

For σ1 we have for the eigenvalue 1 cos(θ/2) = sin(θ/2) = 1/
√
2, i.e., θ = π/2 and the relative

phase is 1, ϕ = 0 and for the eigenvalue -1, we have cos(θ/2) = 1/
√
2, sin(θ/2) = −1/

√
2,

yielding θ = −π/2 and again ϕ = 0.
For σ2 we have for the eigenvalue 1 cos(θ/2) = sin(θ/2) = 1/

√
2, i.e., θ = π/2 and the relative

phase is i, ϕ = π/2 and for the eigenvalue -1, we have cos(θ/2) = 1/
√
2, sin(θ/2) = −1/

√
2,

yielding θ = −π/2 and again ϕ = π/2.

Ex. 4.2. Let A be such a matrix that A2 = I, then for x real

exp(iAx) =
∞∑

n=0

(iAx)n

n!
=

∞∑

k=0

(−1)kx2k

(2k)!
+ iA

∞∑

k=0

(−1)kx2k+1

(2k + 1)!
= I cos(x) + iA sin(x) .

As for all three Pauli matrices X2 = Y 2 = Z2 = 1 holds, this may be used with A = X, Y, Z
and x = θ/2 to verify eqs. (4.4)-(4.6).

Ex. 4.3. For the Pauli matrix Z and the π/8 gate:

Rz(π/4) =

(
e−iπ/8

e−iπ/8

)
= e−iπ/8

(
1

e−iπ/4

)
= e−iπ/8T ,

i.e.,
T = eiπ/8T .

Ex. 4.4. We could try if two matrices su�ce. In that case, depending on the order, either
RzH or RxH should be such that it can be made proportional to Rx or to Rz, respectively. It
is easily seen that this is not the case, as either the 11 and 12 elements cannot be turned into
a cosine and a sine or the o�-diagonal ones cannot vanish. Next, one would consider the form
H = eiαRx(θ)Rz(θ

′)Rx(θ), where examining Rx(−θ)HRx(−θ), and solving for θ such that this
is diagonal. The result is

H = iRx(π/2)Rz(π/2)Rx(π/2) .
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Ex. 4.5.

(n⃗ · σ⃗)2 = (niσi)(njσj) = ninjσiσj = ninj(δijI + iϵijkσk) = n2I = I .

Ex. 4.6. The state corresponding to the Bloch vector λ⃗ is given by the density matrix

ρ =
1 + λ⃗ · σ⃗

2
,

which is transformed as
ρ′ = Rn⃗(θ)ρRn⃗(θ)

†

where
Rn⃗(θ) = cos(θ/2)I + i sin(θ/2)(n⃗ · σ⃗) ,

therefore what we need is to show that

Rn⃗(θ)σ⃗Rn⃗(θ)
† = R

(3)
n⃗ (θ) · σ⃗ ,

which is easily done by computer algebra, using the products of the Pauli matrices.

Ex. 4.7. Using the product rule of Pauli matrices,

XYX = iZX = −Y ,

and using this and eq. (4.5) yields

XRy(θ)X = X [cos(θ/2)I + i sin(θ/2)Y ] = cos(θ/2)I − i sin(θ/2)Y = Ry(−θ) .

Ex. 4.8. Any 2× 2 matrix may be written as

U = (α + iβ)I + i(u⃗+ iv⃗) · σ⃗ ,

and for U to be unitary U †U = I must hold with

U † = (α− iβ)I − i(u⃗− iv⃗) · σ⃗ ,

so
U †U = (α2 + β2 + u2 + v2)I + 2(βu⃗− αv⃗ − u⃗× v⃗) · σ⃗ = I .

Unless u⃗ and v⃗ are collinear, together with u⃗× v⃗ they form a basis, so the coe�cient of σ⃗ can
only vanish if all coe�cients vanish. This is not a good solution, so they must be collinear. In
this case the cross products vanish, and we may write u⃗ = αw⃗, v⃗ = βw⃗, making the coe�cients
of the Pauli matrices vanish, and the coe�cient of I is then

(α2 + β2)(1 + w2) ,

which can be set to 1 if we choose

α = cosα cos(θ/2) , β = sinα cos(θ/2) , w2 = tan2(θ/2) ,

e.g., w⃗ = tan θ/2n⃗, yielding

u = cosα sin(θ/2)n⃗ , v = sinα sin(θ/2)n⃗ ,
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where n⃗ is a unit vector, and then

U = exp(iα)Rn⃗(θ) .

this completes the proof for (a).
(b) For the Hadamard gate, let us �rst separate the trace, 2 cos(θ/2) = TrH = 0 yielding

θ/2 = ±π/2, θ = ±π. The decomposition may be obtained using Tr σaσb = 2δij, so the
coe�cients are obtained as traces

ieiα sin(θ/2)n1 =
1

2
Tr σ1H = 1/

√
2 ,

ieiα sin(θ/2)n2 =
1

2
Tr σ2H = 0 ,

ieiα sin(θ/2)n3 =
1

2
Tr σ3H = 1/

√
2 ,

yielding, e.g.,
θ = π , n1 = n3 = 1/

√
2 , n2 = 0 , α = −π/2 .

(c) We may read o� α = π/4, θ = −π/2, n1 = n2 = 0 and n3 = 1.

Ex. 4.9. To understand why a single qubit unitary operator can be written in the form (4.12),
note, that the columns of a unitary operator must be unit vectors, and a 2 element complex
unit vector may be parametrised by an overall phase (δ), a relative phase (β) and an angle
giving the magnitude of the two components (θ). This also determines the second column up
to a relative phase (δ becomes the relative phase), and then there is a new overall phase (α).

Ex. 4.10. If we multiply the matrices, we get U = exp(iα)Rx(β)Ry(γ)Rx(δ), or in matrix form

U =

(
ei(α−(β+δ)/2) cos γ

2
−ei(α−(β−δ)/2) sin γ

2

ei(α+(β−δ)/2) sin γ
2

ei(α+(β+δ)/2) cos γ
2

)
.

The argument that this covers all unitary matrices is similar to that in the previous exercise:
the rows of a unitary matrix have to be normalised and unitary; a single 2-component unit
vector has the following parameters: magnitude angle (γ), common phase (β) and relative
phase (δ), and this also determines the other row, the angle β becomes the relative phase of
the two rows, and there is a new common phase α.

Ex. 4.11. First: see erratum to the exercise in the book! There is an in�nite sequence of
operators.

We may rephrase the Thm. 4.1 in the form that roations around two orthogonal axes
generate all unitaries up to a phase. What we need is that we have two axes, and for that, we
show via computation that

Rn⃗(π)Rm⃗(γ)Rn⃗(π)Rm⃗(−γ)
is a rotation with some angle around an axis n⃗′ such that n⃗ · n⃗′ = 0.

To show that arbitrary axes are OK in stead of z, y, we just need a unitary V that takes n⃗
into z and n⃗′ into x and apply the decomposition to V †UV .

Ex. 4.12. Compare �rst the Hadamard operator,

H =
1√
2

(
1 1
1 −1

)
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with the form in eq. (4.12),

H =

(
ei(α−β/2−δ/2) cos γ

2
−ei(α−β/2+δ/2) sin γ

2

ei(α+β/2−δ/2) sin γ
2

ei(α+β/2+δ/2) cos γ
2

)

and read o� the parameters

α = π/2 , β = 0 , γ = π/2 , δ = π .

Now, proceed as in the proof of Corollary 4.2, and set

A = Rz(β)Ry(γ/2) =

(
e−iβ/2 cos γ

2
−e−iβ/2 sin γ

2

eiβ/2 sin γ
2

eiβ/2 cos γ
2

)
,

B = Ry(−γ/2)Rz(−(δ + β)/2) =

(
ei(β+δ)/4 cos γ

2
e−i(β+δ)/4 sin γ

2

−ei(β+δ)/4 sin γ
2

e−i(β+δ)/4 cos γ
2

)
,

and

C = Rz((δ − β)/2) =

(
ei(β−δ)/4

e−i(β−δ)/4

)
.

It is easy to verify that ABC = I and with the values of the angles α, β, γ, and δ obtained
above, exp(iα)AXBXC = H.

Ex. 4.13. Simple computation (see computer algebra code).

Ex. 4.14. Simple computation (see computer algebra code). With the global phase included

HTH = eiπ/8Rx(π/4) .

Ex. 4.15. See book errata!
(1) Direct calculation. See computer algebra code.
(2) Substitution.

4.3 Controlled operations

Ex. 4.16. Remember the numbering of states (page xxx): 0 . . . 00, 0 . . . 01 to 1 . . . 11. With
this, the matrix of the Hadamard gate on the x2 (upper) wire yields

I ⊗H =
1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 .

In the case of putting the Hadamard gate on the x1 (lower) wire, we obtain

H ⊗ I =
1√
2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 .

Note that the �rst one is putting Hadamard matrices in the place of elements of the unit matrix,
and the second one is placing unit matrices on the elements of the Hadamard gate's matrix.
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Ex. 4.17.

CNOT = (I ⊗H)CZ(I ⊗H) .

The control bit is, for both the CNOT and the CZ, the upper (x2) one.

Ex. 4.18. The controlled Z-gate with the control bit on the upper (x2) qubit has the matrix




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 −1




which can be obtained by �lling it columnwise, and keeping in mind that both bits are un-
changed and there is a sign if bit 1 is 1 and the control bit is one. Similarly, putting the control
bit on the lower (x1) bit yields 



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




The two matrixes agree.

Ex. 4.19. Let us write the elements of the density matrix as

ρ =




ρ00,00 ρ00,01 ρ00,10 ρ00,11
ρ01,00 ρ01,01 ρ01,10 ρ01,11
ρ10,00 ρ10,01 ρ10,10 ρ10,11
ρ11,00 ρ11,01 ρ11,10 ρ11,11


 .

With ρ above, the action of the CNOT gate is

CNOTρCNOT =




ρ00,00 ρ00,01 ρ00,11 ρ00,10
ρ01,00 ρ01,01 ρ01,11 ρ01,10
ρ11,00 ρ11,01 ρ11,11 ρ11,10
ρ10,00 ρ10,01 ρ10,11 ρ10,10


 .

Ex. 4.20. It can be shown by multiplying the matrices, that

(H ⊗H)CNOT(H ⊗H) = CNOT′ ,

where in the case of the CNOT the control bit is the upper one, and for CNOT′ it is the lower
one.

This means, that CNOT has the same matrix in the ± basis as CNOT′ in the original one,
keeping |+⟩|+⟩, |−⟩|+⟩, and exchangging |+⟩|−⟩ and |−⟩|−⟩. The latter can also be veri�ed
by direct calculation.

Ex. 4.21. Let us consider the case when the top two qubits are 0, then the leftmost controlled
V does nothing, the left CNOT similarly does nothing, the controlled V † does not act, neither
does the second CNOT, and neither the last controlled V .

Now if the top qubits are 01, then none of the CNOTs act, and neither does the rightmost
controlled V , so the action on the lowest qubit is V V † = I.
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If the top qubits are 10, then the CNOTS both act, so between the two CNOTs the middle
qubit becomes I too, and so the controlled V † and the right V both act, and the e�ect on the
lowest qubit is V †V = I.

If the two upper qubits are 11 then both the CNOTs act, and the middle qubit is 0 between
the two, so the action on the last qubit is V 2 = U .

Ex. 4.22. We insert the CV and CV † gates from �g. 4.6 into �g. 4.8. In this way, we construct
C2U using 3 × 4 = 12 single qubit gates and 3 × 2 + 2 = 8 CNOT gates. We need to reduce
this to 8 one qubit gates and 6 CNOTs. To this, let us notice the following:

· · ·

. . .

. . .

. . .

. . .

. . .

(
1

eiα

) (
1

e−iα

)

C B A A† B† C†

(
1

eiα

)

C B A

in the circuit, the AA† = I = C†C, so 4 single qubit operators drop out, we are down to 8. We
still need to save 2 CNOTs.

Notice that the phase gates commute with all CNOTs that use their qubit as control, so
they may be moved to be juts before and after the CNOT third from the right.

On the top two lines, the CNOTS 3rd and 6th from the left cancel each other. The di�erence
is that CNOTs 4 and 5 are controlled by the result of CNOT 3, i.e., parity of the two control
lines, so they may be replaced by two CNOTs, controlling the third line, one controlled from
line 1 the other from 2, left of the CNOT originally 6th from the left.

The block consisting now of the phase shifts and the CNOTs that were originally 3rd and
6th from the left is diagonal, so it may be moved around freely.

Next we notice that CNOT2 = I, so there are 4 CNOTs that drop out. What remains is
the following circuit:

(
1

eiα

)

(
1

eiα

) (
1

e−iα

)

C B B† B A

which consists of 8 single qubit gates and 6 CNOTs. See also [5]

Ex. 4.23. As
Rx(θ) = eiαRz(β)Ry(γ)Rz(δ)
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with α = 0, β = −π/2, γ = θ, and δ = π/2, the controlled Rx(θ) is given by �g. 4.6, with
A = Rz(β)Ry(γ/2), B = Ry(−γ/2)Rz(−(δ+β)/2), and C = Rz((δ−β)/2). This only includes
3 single qubit gates as α = 0. I haven't been able to �nd a representation with fewer gates.

For Ry(θ), the decomposition is trivial, α = β = δ = 0 and γ = θ, and so A = Ry(θ/2),
B = Ry(−θ/2) an C = I, so one gate fewer is needed.

It is possible to show that we cannot do the same tric for Rx(θ), as that would require a
decomposition AB = I, AXBX = Rx(θ). The �rst of these means B = A†, and AXA†X =
Rx(θ), AXA

† = Rx(θ)X. The left hand side is a Hermitean matrix, and the right is not, unless
θ = 0.

Ex. 4.24. It is easy to verify what the circuit does on vectors of the form |00⟩|x⟩, |01⟩|x⟩, etc.
The simplest case is that of |00⟩|x⟩ in which case all the CNOTS do nothing, and so x is

acted on by the operator TT †TT †H = I.
In the case of vectors of the form |01⟩|x⟩, the operator HTT †XTT †XH = I acts on x.
In the case of vectors of the form |10⟩|x⟩ the middle qubit becomes 1 after the �rst CNOT

acting on it, then collects a phase exp(−iπ/4) from the T † gate second from the left on it,
and then becomes |0⟩ with this phase again at the next CNOT, the top qubit collects a phase
exp(iπ/4) from the T gate on the top wire, the two cancel, so the operator HTXT †TXT †H = I
acts on x.

In the case of vectors of the form |11⟩|x⟩ similarly a phase exp(iπ/4) is collected by the top
qubit, i exp(−iπ/4) by the second, and so the operator iHTXT †XTXT †XH = X acts on x.

The above actions are identical to the action of the To�oli gate.

Ex. 4.25. (1) In �g. 1.7, the swap gate was constructed from 3 cnots as

and we know that all these gates can be controlled separately if we replace all cnots with
To�olis,

= .

By simple calculation, we can show that

= .

(2) If we insert V = (1 − i)(I + iX)/2 and V † = (1 + i)(I − iX)/2 into the circuit in �g.
4.8, we obtain an implementation of the To�oli gate. Adding the two (leftmost and rightmost)
CNOTs from the �gure above, we obtain an implementation of the Fredkin gate. It contains
he 2 CNOTs and 3 controlled V 's of �g. 4.8 and two additional CNOTs, i.e., 7 two-qubit gates.

(3) In the resulting circuit, the same (middle) qubit controls both the V s on the lowest
qubit, i.e., we may save two additional two qubit gates if we replace the controlled V 's with a
controlled XV and a controlled V X.
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Ex. 4.26. By examining the result of the circuit on states of the form |0⟩|0⟩|x⟩, |0⟩|1⟩|x⟩, . . .
the claim is veri�ed, and the phases are

θ(0, 0, 0) = θ(0, 0, 1) = · · · = θ(1, 1, 1) = 0 , θ(1, 0, 1) = π .

Ex. 4.27. There is a semi-systematic aproach based on the truth table of the circuit[6]. From
the truth table, we may �gure out the three output qubits as logical functions of the three
input ones as

o3 = x3 ⊕ (x2x1) , o2 = x2 ⊕ x1 , o1 = x2 ⊕ x2 ⊕ x3x1 ⊕ x2x1 .

We recognise that o3 is the result of a To�oli gate controlled by the input qubits 1,2 and the
target is the third, and o2 is the output of a CNOT qubit 1 contolling 2. So we start the circuit
with such a To�oli and CNOT, and then note that the qubit 1 still has to be constructed. It
contains x2 and x1, so we add two CNOTs, and as that still does not get the desired result, we
add a To�oli. Expanding the products shows that this yields the desired circuit:

Ex. 4.28. The C5U gate is implemented using V , such that V 4 = U . The circuit is the
following [7],

. . .

. . .

. . .

. . .

. . .

. . .V V † V V † V

The idea behind it is that

x5 − (x5 ⊕ x4) + x4 − (x5 ⊕ x4) + x3 − (x5 ⊕ x3) + x2 − . . .

+(x5 ⊕ x4 ⊕ x3) + · · · = 4x5x4x3x2x1 ,

where in the sum, we add 1 for a true and 0 for a false logical variable, and a positive power
means an operator V and a negative one a V †.

Ex. 4.29. Let us note that V = (1− i)(I + iX)/2 is such that V 2 = X. Now the construction
may be done recursively,

=

V V † V

.
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Let the cost for n control qubit be Cn. It is clear that Cn = O(n)+Cn−1, resulting in Cn = O(n2)
[7].

Ex. 4.30. See 4.29 and Ref. [7].

Ex. 4.31. All these circuit identities can be veri�ed by calculating the matrices (e.g., using
computer algebra). In some cases it may be worthwile to do it more by checking on the elements
of a basis, e.g., eq. (4.32),

X
=

X

X

It is easy to verify that the results for the basis vectors with labels 00, 01, 10, 11 are the basis
vectors 11, 10, 01, and 00, respectively.

4.4 Measurement

Ex. 4.32. A projective measurement with measurement operators Pi gives the ith result with
probability pi = TrPiρ and the resulting state is ρi = PiρPi/Tr (PiρPi) = PiρPi/pi. If the
observer does not learn the outcome, i.e., an ensemble of systems is not separated according to
the result, then after the measurement, the system is with probability pi in state ρi, i.e.,

ρ′ =
∑

i

pi
PiρPi
pi

=
∑

i

PiρPi ,

which is the statement to be prove, eq. (4.40).
In the case of a composite system and a measurement on subsystem 2, in the above formula,

all projection matrices are of the form Pi = Pi⊗ I, where Pi on the left acts on a product space
and Pi on the right acts on the Hilbert space of ststem 2. In the present case, the latter are
P0 = |0⟩⟨0| and P1 = |1⟩⟨1|.

The reduced density matrix of subsystem 1 before the measurement is ρ1 = Tr 2ρ. After the
measurement it is

ρ′1 = Tr 2ρ
′ =
∑

i

Tr 2(PiρPi) .

Expanding the density matrix in a product basis,

ρ =
∑

ijkℓ

ρij,kℓ|ij⟩⟨kℓ| ,

and calculating the traces, as in eq. (2.178), and using the orthonormality of the basis,

ρ1 = Tr 2ρ =
∑

i,j,k

ρij,kj|i⟩⟨k| ,

and similarly,

ρ′1 = Tr 2ρ
′ =
∑

m

Tr 2PmρPm ,
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where, using Pm = |m⟩⟨m|,

Pm|ij⟩⟨kℓ|Pm = (I ⊗ |m⟩⟨m|)|ij⟩⟨kℓ|(I ⊗ |m⟩⟨m|) = δm,jδℓ,m|im⟩⟨km| ,

therefore

ρ′1 = Tr 2

∑

ijkℓ

∑

m

ρij,kℓδm,jδℓ,m|im⟩⟨km| =
∑

m

ρim,kmTr 2|im⟩⟨km| =
∑

m

ρim,km|i⟩⟨m| = ρ1 ,

so whe have demonstrated ρ1 = ρ′1, i.e., that a measurement on subsystem 2 without learning
the outcomes does not a�ect the reduced density matrix of subsystem 1.

Ex. 4.33. Measurement of the Bell states corresponds to the measurement operators

Bij = |βij⟩⟨βij|

where βij denote the Bell states as given in eqs. (1.23)-(1.26). The circuit in the exercise �rst
applies a unitary operator

U = (H ⊗ I)CNOT

and then performs the measurement using the projectors of the computational basis. Measure-
ment of a pure state ψ in the computational basis gives probability amplitudes ⟨i, j|ψ⟩, mea-
surement on Uψ yields ⟨i, j|Uψ⟩, so the corresponding measurement operators are U |ψ⟩⟨ψU †,
i.e., the measurement operators are now UPijU

†, where Pij = |i, j⟩⟨i, j| the measurement op-
erators in the computational basis. What one needs to verify (matrix multiplication, may be
done using computer algebra) is

Bij = UPijU
† ,

which completes the proof.

Ex. 4.34. If U has eigenvalues ±1, that means it is of the form

U = λ1|λ1⟩⟨λ1|+ λ2|λ2⟩⟨λ2| , λi ∈ {±1} .

One possibility for its measurement would require to �nd an operator V such that V |0⟩ =
eiα1|λ1⟩ and V |1⟩ = eiα2|λ2⟩, and then use the circuit

V .

We shall show that the corresponding measuring operators (see the previous solution) are the
ones corresponding to U ,

P ′
0 = V |0⟩⟨0|V † = |λ1⟩⟨λ1| = Pλ1 ,

and
P ′
1 = V |1⟩⟨1|V † = |λ2⟩⟨λ2| = Pλ2 .

The operator V is unitary and

V = eiα1 |λ1⟩⟨0|+ eiα2 |λ2⟩⟨1| .

38



However, this is a rather di�erent operator from U . From U a controlled U may be constructed,
and from a controlled U the circuit in the book. That circuit maps the incoming state into the
following states,

|0⟩|ψ⟩ → 1√
2
(|0⟩+ |1⟩)|ψ⟩ → 1√

2
(|0⟩|ψ⟩+ |1⟩U |ψ⟩ → 1√

2
(|0⟩(I + U)|ψ⟩+ |1⟩(I − U)|ψ⟩ ,

and then in this �nal state is a measurement performed on the qubit 2. The corresponding
measurement operators are P0 = |0⟩⟨0| ⊗ I and P1 = |1⟩⟨1| ⊗ I. The probabilities are

pi = TrPi
1

2
(|0⟩|(1+U)ψ⟩+ |1⟩(1+U)|ψ⟩)(⟨0|⟨ψ|(1+U)+ ⟨1|⟨ψ|(1−U)) =

∣∣∣∣
〈
ψ

∣∣∣∣
1± U√

2

∣∣∣∣ψ
〉∣∣∣∣

2

.

The resulting output state is

ψout =
Pi

1√
2
(|0⟩(I + U)|ψ⟩+ |1⟩(I − U)|ψ⟩

√
pi

=

I±U√
2
|ψ⟩

∣∣∣
〈
ψ
∣∣∣1±U√

2

∣∣∣ψ
〉∣∣∣
,

which is both the same as in the case of measuring U .
Note, that we have assumed that the operator has one positive and one negative eigenvalue,

otherwise it would be the trivial operator ±I.

Ex. 4.35. The �rst circuit �rst maps an input state |0⟩ ⊗ ψ1 + |1⟩ ⊗ ψ2 to |0⟩ ⊗ ψ1 + |1⟩ ⊗ ψ2,
and then performs the measurement on the upper qubit, resulting in the probabilities

p0 = ∥ψ1∥2 , p1 = ∥Uψ2∥2 = ∥ψ2∥2 ,

and the output states
ψ1

∥ψ1∥
,

Uψ2

∥Uψ2∥
=
Uψ2

∥ψ2∥
.

In the case of the second circuit, the measurement produces, with the same probabilities the
post-measurement states

ψ1

∥ψ1∥
,

ψ2

∥ψ2∥
,

and then if the result was 1, the operator U is applied to the second state, yielding the same
output states as in the �rst case. This completes the proof that the measurement commutes
with control.

4.5 Universal quantum gates

Ex. 4.36. To construct the modulo 2 adder, z = x + y mod4, let us consider the bits of z,
z0 = x0 ⊕ y0, this is implemented using a CNOT, and z1 = x1 ⊕ y1 ⊕ x0y0, where we may
construct the x2 ⊕ z2 part using a CNOT and the rest using a To�oli gate, yielding

x1 x1

x0 x0

y1 z1

y0 z0
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.

Ex. 4.37. We proceed as in the 3× 3 case constructing U1, then U2, and use a similar formula
(with the nontrivial rows being the columns 1, 4) to construct U3. Then the same formula is
used to construct U4 (nontrivial columns 2, 3), U5 (2, 4) and �nally U6 is constructed as U3 in
the 3× 3 case. See computer algebra code for details.

Ex. 4.38. Let us consider the elements of the canonical basis of the d dimensinal space. Let us
assign the vertices of a graph to the basis vectors, so we have d vertices. If we have a product of
k two-level matrices, for each of these, we link the vertices corresponding to the basis elements
mixed by the two-level matrix. In this way, for k matrices we get a graph of k edges. In a
graph of d vertices, with less than d− 1 edges all vertices cannot be linked. On the other hand,
it is easy to construct a matrix that has no nonzero elements, i.e., in the image of any of the
basis elements all others have a non-zero coe�cient.

Ex. 4.39. The operator acts on basis vectors 2 (binary 010) and 7 (binary 111), so the Gray
code is 010, 011, 111. We need to implement only one exchange, 010 to 011 with a C2NOT
acting on bit 1 (rightmost) controlled by bit 2 and the inverse of bit 3, then the C2U controlled
by 1 and 2 acting on 3 (the matrix looks the same but the element b is shifted one to the right,
c one down and a one down and one to the right). The corresponding circuit is

Ũ

.

Ex. 4.40. The error
E(U, V ) = max

ψ:∥ψ∥=1
∥(U − V )ψ∥

is invariant to unitary transformations, as if T is unitary

E(TUT †, TV T †) = max
ψ:∥ψ∥=1

∥T (U − V )T †ψ∥ = max
Tϕ

∥T (U − V )T †Tϕ∥ = E(U, V )

where ψ = Tϕ, and ∥Tϕ∥ = ∥ϕ∥ and unitaries are bijective on the unit sphere, and for all
vectors ξ, ∥Tξ∥ = ∥ξ∥. We may therefore write Rn̂(α) = URz(α)U

† where R is any such
rotation that rotates n̂ into the z axis.

In the case of the axis being the z axis,

Rz(α)−Rz(α + β) =

(
e−iα − e−i(α+β)

eiα − ei(α+β)

)
= Rz(α)

(
1− e−iβ/2

1− eiβ/2

)
,

and as Rz(α) is unitary, we only need the norm of the rightmost matrix. For any vector
ψ = (ψ0, ψ1)

T , this matrix maps it into the vector ((1 − e−iβ/2)ψ0, (1 − eiβ/2)ψ1)
T whose norm

is |1− e−iβ/2|∥ψ∥.

Ex. 4.41. First, we calculate the state,

ψ = (H ⊗H ⊗ I)Toffoli(I ⊗ I ⊗ S)Toffoli(H ⊗H ⊗ I)|0, 0⟩ ⊗ ψ ,
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and then show that of we project using the operator

|0⟩⟨0| ⊗ |0⟩⟨0| ⊗ I ,

The projected vector is √
5

8

1 + i√
2
Rz(θ)ψ ,

and the full vector is

|0⟩|0⟩
√

5

8

1 + i√
2
Rz(θ)ψ +

i

2
√
2

1 + i√
2
(−|0⟩|1⟩ − |1⟩|0⟩+ |1⟩|1⟩)Zψ

Consequently, 0, 0 is measured on qubits 3,2 with a probability
√
5/8, and in this case, the

output state of the �rst (unmeasured) qubit is Rz(θ)ψ with a global phase.
Using Z2 = 1, the procedure can be enhanced. If 0, 0 is measured, the output is used, if

not, Z is applied, and the procedure is repeated. In all steps, there is a
√

5/8 chance of getting

the result, so the probability of not yet stopping in step k is qk where q = 1−
√

5/8. qk → 0,
so the probability of not yet having the result vanishes.

Ex. 4.42. Let us note �rst that sin2 θ = 1− cos2 θ = 1− 9/25 = 16/25, so sin θ = ±4/5. We
shall assume the positive sign (the negative sign case is similar).

(1) If θ given by cos θ = 3/5 is a rational multiple of π, i.e., θ = πp/q, where p, q ∈ N, then
2qθ = 2πp, so

1 = eimθ =

(
3

5
+ i

4

5

)m
,

where m = 2q > 0, which may be recast as

(3 + 4i)m = 5m .

(2) Let us proceed by induction. Assuming (3 + 4i)k = 3 + i4(mod 5), we have

(3 + 5i)k+1 = (3 + 4i)k(3 + 4i) = (3 + 4i)(3 + 4i) (mod 5) = (3 + 5i)2 = (3 + 4i) (mod 5) ,

and the last step is veri�ed by computation. As a result, the m obtained in the above sub-
excercise (1) cannot exist, as 5m = 0 (mod 5).

Ex. 4.43. In exer. 4.41 we have shown how to obtain Rz(θ), cos θ = 3/5 using Hadamard,
To�oli and phase gates and measurements. As θ is an irrational multiple of π, any other angle
may be approximated with powers (repeated application) of that circuit. In sec. 4.5.3, it was
shown that Hadamard, phase, CNOT and π/8 are a universal set, so all that is to add is that
the π/8 gate is approximated.

Ex. 4.44. If α is irrational, the C2iRx(πα) gate is universal, as it can approximate then any
Rx(θ).

For θ = π we get the To�oli. Setting one control bit to 1 yields the CNOT.
Setting θ = π/2 and the control qubits to 1 yields a Pauli X. The circuit

Rx(π/2) Rx(−π/2)
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provides a state |−⟩ when the measurement result is 1 (up to a phase of i).
Inputting |−⟩ on target bit, 1 on one control yields a Z rotation on the other control qubit.
We know that CNOTs and 2-level gates are universal, so we need to approximate 2-level

gates. These can be obtained using Rx(θ) and Rz(θ) gates. (See Ref. [9].)

Ex. 4.45. The Hadamard gate has a matrix

H =
1√
2

(
1 1
1 −1

)
,

the matrix of the S gate is

S =

(
1

i

)
,

the matrix of the CNOT is

CNOT =




1
1

1
1


 ,

and that of the To�oli gate is

Toffoli =




1
1

1
1

1
1

1
1




,

which are all matrices with either integer elements or integer times 1/
√
2, so when multiplying

such matrices, a matrix of the form 2−k/2M results, where every Hadamard matrix contributes
1 to k.

The π/8 gate has a matrix

T =

(
1

eiπ/4

)
=

(
1

(1 + i)/
√
2

)
,

so in this case, M may also include integer times
√
2 elements.

4.6 Simulation of quantum systems

Ex. 4.46. The state vector of a single qubit has 2 complex components, for n qubits, a tensor
product is taken, so the state vector has 2n (complex) components. The density matrix (an
operator acting on this space) is therefore a complex 2n×2n matrix. This matrix is self-adjoint,
so the main diagonal must be real, and the elements above the diagonal are complex conjugates
of the ones below it, and there is one constraint (total probability of 1) that the trace is 1, so
we have 4n − 1 real parameters.
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Ex. 4.47. Using the fact that the operators Hk commute, the terms in the series of the
exponential may be reorganised as

e−iHt =
∞∑

n=0

(−iHt)n

n!
=
∑

n

(−it
∑

kHk)
n

n!

=
∑

n,m1,m2,...,mk−1

(−it)n

n!

n!

(n−m1 −m2 − . . . )!m1!m2! . . .
Hm1

1 Hm2
2 . . .

=
∑

m1,m2,...,mk

(−it)
∑

imi

m1!m2! . . .mk!
Hm1

1 Hm2
2 . . . Hmk

k

=

(∑

m1

(−iH1t)
m1

m1!

)(∑

m2

(−iH2t)
m2

m2!

)
. . .

(∑

mk

(−iHkt)
mk

mk!

)

= e−iH1te−iH2t . . . e−iHkt .

Ex. 4.48. If Hk involves a maximum of c particles out of n then the di�erent Hk terms are
given as (

n

c

)
=
n(n− 1) . . . (n− c)

c!
= O(nc+1) .

Ex. 4.49. Use the power series of the exponential, e.g.,

eA∆t = 1 + A∆t+
1

2
(A∆t)2 +O(∆t3) ,

so

e(A+B)∆t = I + A∆t+B∆t+
1

2
(A2 + AB +BA+B2)(∆t)2 +O(∆t3) ,

and the other side of the equation is

eA∆teBδte−
1
2
[A,B](∆t)2

= (I + A∆t+
1

2
A2(∆t)2)(I +B∆t+

1

2
B2(∆t)2)(I − 1

2
[A,B](∆t)2) +O(∆t3)

= I + (A+B)∆t+

(
AB +

1

2
(A2 +B2 − [A,B]

)
(∆t)2 +O(∆t3)

= I + (A+B)∆t+
1

2

(
A2 + AB +BA+B2

)
(∆t)2 +O(∆t3) ,

and this agrees with the expansion of e(A+B)∆t above.
Similarly, to prove eq. (4.103), on the left hand side we have

ei(A+B)∆t = I + i(A+B)∆t+O(∆t2) ,

and on the right

eiA∆teiB∆t = (I + iA∆t)(I + iB∆t) +O(∆t2) = I + i(A+B)∆t+O(∆t2) ,

and the two agree.
In the case of eq. (4.104), the left hand side is

ei(A+B)∆t = I + i(A+B)∆t− 1

2
(A2 + AB +BA+B2)(∆t)2 +O(∆t3) ,
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and the right one is

eiA∆t/2eiB∆teiA∆t/2

= (I +
i

2
A∆t− 1

8
A2(∆t)2)(I + iB∆t− 1

2
B2(∆t)2)(I +

i

2
A∆t− 1

8
A2(∆t)2) +O(∆t3)

= I + i(A+B)∆t− 1

2

(
A2 + AB +BA+B2

)
(∆t)2 +O(∆t3) .

Ex. 4.50. (a) With H =
∑L

k=1Hk,

U∆t

=
[
e−iH1∆te−iH2∆t . . . e−iHL∆t

] [
e−iHL∆te−iHL−1∆t . . . e−iH1∆t

]

=

[(
I − iH1∆t−

1

2
H2

1 (∆t)
2

)(
I − iH2∆t−

1

2
H2

2 (∆t)
2

)
. . .

(
I − iHL∆t−

1

2
H2
L(∆t)

2

)]

[(
I − iHL∆t−

1

2
H2
L(∆t)

2

)(
I − iHL−1∆t−

1

2
H2
L−1(∆t)

2

)
. . .

(
I − iH1∆t−

1

2
H2

1 (∆t)
2

)]

+O(∆t2)

= I − 2iH∆t−
(
2
∑

k

H2
k +

∑

k ̸=j
(HkHj +HjHk)

)
+O(∆t3)

= e−2iH∆t +O(∆t3) .

(b) Let us note, that

E(Um
∆t, e

−2imH∆t) = ∥Um
∆t − (e−2iH∆t)m∥ ,

and for any operators A, B with C = A − B, we have Am − Bm = (B + C)m − Bm =
Bm + CBm−1 + BCBm−2 + · · · − Bm, and so ∥Am − Bm∥ = ∥CBm−1 + BCBm−1 + . . . ∥ ≤
∥CBm−1∥+ ∥BCBm−2∥+ · · · ≤ m∥B∥m−1∥C∥, so

E(Um
∆t, e

−2imH∆t) ≤ m∥Um−1
∆t ∥E(U∆t, e

−2iH∆t)

and from (a) we know (the de�nition of O) that there is a number α′ such that ∥U∆t−e−2iH∆t∥ ≤
α′∆t3, so

E(Um
∆t, e

−2imH∆t) ≤ m∥U∆t∥m−1α′∆t2 = mα∆t3

with α = ∥U∆t∥m−1α′. As U∆t is unitary, ∥U∆t∥ = 1.

Ex. 4.51. We may express the Pauli matrices X, Y with Z and single-qubit gates as follows:

Y = Rx(−π/2)†ZRx(−π/2) ,
and

X = HZH ,

and then we apply the techniques used for the Hamiltonian in eq. (4.113),

Rx(
π
2
) Rx(−π

2
)

H H

|0⟩ e−iZ∆t
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We have used the fact that pairs of the form UU † cancel.

Pr. 4.1. Let G be the gate computing the function f reversibly using T To�oli gates, then the
circuit

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

x G G−1 exp
(
−2iπf(x)

2n

)
x

|0⟩ e−iπ e−iπ/2 e−
iπ

2n−1

implements the mapping using 2T + n To�oli and controlled phase shift gates.

5 The quantum Fourier transform and its applications

5.1 The quantum Fourier transform

Ex. 5.1. The operator de�ned by eq. (5.3) has the matrix

Fkj =
1√
N
e2πikj/N ,

so what we need to show is F †F = I, and the matrix elements of F †F are

∑

k

F ∗
kℓFkj =

1

N

N−1∑

k=0

e2πik(j−ℓ)/N = δℓ,j ,

which can be seen as follows: if ℓ ̸= j, the sum is a geometric series, and the explicit summation
formula gives zero due to the periodicity of e2πik/N with a period N , and at ℓ = j, all summands
are 1.

Ex. 5.2. The Fourier transform of the state |00 . . . 0⟩ is

1√
N

N−1∑

k=0

|k⟩ = 1√
N

[|00 . . . 0⟩+ |0 . . . 01⟩+ . . . |11 . . . 1⟩] ,

where N = 2n and n is the number of qubits, which is obtained by setting j = 0 in eq. (5.2).

Ex. 5.3. Eq. (5.1), in the case of N = 2n requires the computation of 2n sums, each sum
containing N summands, so the total number of operations is N2 = 22n.

The number of operations may be reduced using the trick of eq. (5.4). What is given there
is the contribution of xj1j2...jn to yk1k2...kn , and we may note that as exp(2πi0.jn) = ±1, so the
contributions to y0k2...kn and y1k2...kn are either the same if j1 = 0 or di�er by a sign if j1 = 1.
This can be used to split the transform in a half, and compute the steps separately. This way,
in each step, the number of bits of the output index are reduced by one. The input indices,
over which a loop is still needed, still range over n bit numbers, so there will be 2n steps, so
the total number of steps is n2n.
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Ex. 5.4. We follow the procedure of Sec. 4.3. We �rst decompose the R-gate as R =
eiαAXBXCX where ABC = I, as follows,

Rk =

(
1

e2πi/2
k

)

which when compared with eq. (4.12) yields γ = 0, and α = π/2k, β = 2π/2k and δ = 0
(note that α − β/2 = 0 and α + β/2 = 2π/2k), yielding A = Rz(2π/2

k), B = Rz(−π/2k) and
C = Rz(−π/2k). We may now use the circuit in Fig. 4.6.

Ex. 5.5. One possibility for the inverse-FT is to put the gates in reverse order, and replace
them by their adjoints. The adjoint of a controlled gate is the controlled version of the adjoint,
R†
k just shifts with the negative phase, and H† = H.
Another possibility is based on the following property of the classical Fourier-transformation:

the inverse is given by the same formula as the original transformation just with the phases
reversed. So, the mapping

|k⟩ 7→ 1√
N

N−1∑

ℓ=0

e−i2π(k−ℓ)/N |ℓ⟩

is the inverse, as in this case, with this transformation applied after the direct one,

|j⟩ 7→ 1

N

N−1∑

k=0

N−1∑

ℓ=0

e2πi(j−ℓ)k/N |ℓ⟩ = |j⟩ ,

where we have used the fact that the same sum has been evaluated in the case of the classical
Fourier transformation, see ex. 5.1

As the formula above is the same as for the direct Fourier transform, with the phases
reversed, the circuit implementing it is also the same, just replacing the controlled S-gates with
controlled S†-gates (phase shift gates with negative phase).

Ex. 5.6. According to the calculation in box 4.1, if operators in a product of operators are
approximated, the errors add up linearly. The depth of the circuit implementing the quantum
Fourier transform scales as n2, where n is the number of qubits, so if the error of each operator
scales as 1/p(n), the total error scales as n2/p(n).

5.2 Phase estimation

Ex. 5.7. Let us apply the operator implemented by the circuit in �g. 5.2 to a state of the form
|j⟩ ⊗ ψ, where j = jt−12

t−1 + · · · + j12 + j0. If jk = 1, an operator U2k is applied to ψ, so the
result is

|j⟩ ⊗
∏

k:jk=1

U2kψ = |j⟩ ⊗ U
∑

k jk2
k

ψ = |j⟩ ⊗ U jψ .

Ex. 5.8. In the case of an initial state which is a superposition of the eigenstates of U , the
derivation in sec. 5.2.1 may be repeated, but in eq. (5.23), the there is also a summation

∑
u cu

in the front and in the exponent, ϕ is replaced by φu, u running over the eigenvalues of U .
The formula in eq. (5.27) can now be used to obtain the formula for P (|m− b| > e|u), i.e.,

the conditional probability, and then the total probability of such a �wrong� result is

p(|m− b| > e) =
∑

u′

P (|m− b| > r|u′)Pu′ ≥ P(|m− b| > e|u)Pu +
∑

u′ ̸=u
P|u

′| ,
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the rest of the derivation yields

P (|m− b| > e|u) ≤ 1− ε ,

and so
p(|m− b| > e) ≤ |cu|2ε+

∑

u′ ̸=u
|cu|2 ,

so the probability

p(|m− b| ≤ e) ≥ 1− |cu|2ε−
∑

u′ ̸=u
|cu′ |2 = |cu|2(1− ε) ,

where we have used
∑

u′ |cu′|2 = 1.

Ex. 5.9. In this case, the phases to be measured, are 0 and π, corresponding to the eigenvalues
1 and −1, so they can be both exectly represented in the form 2π0.b with b = 0, 1, as binary
fractions. This means that in the circuit in �g. 5.2-5.3 we need one bit, t = 1, no swap, and the
quantum Fourier transform for 1 bit is the Hadamard operator, so the resulting circuit looks
like

|0⟩ H H

ψ U ψ

Note that the circuit is the same as the one considered in ex. 4.34

5.3 Applications: order-�nding and factoring

Ex. 5.10. The powers of 5 mod 21 are: 5, 4, 20, 16, 17, 1, so the order of 5 is 6.

Ex. 5.11. According to Fermat's theorem, the order r of any x such that gcd(x,N) = 1 is a

divisor of φ(n) =
∏

j p
αj−1
j (pj − 1) where the prime factorisation of N is N =

∏
j p

αj

j , so on one
hand, r|φ(N), so r ≤ φ(N), and comparing the formula for φ(N) with the factorisation of N ,
φ(N) < N .

Ex. 5.12. As gcd(x,N) = 1, the operator de�ned by eq. (5.36) is a permutation of the basis
vectors (it maps basis vectors onto basis vectors and has an inverse), therefore it preserves
scalar products.

Ex. 5.13. Substituting eq. (5.37) into eq. (5.44),

1√
r

r−1∑

s=0

|us⟩ =
1

r

r−1∑

k,s=0

exp

(
−2πisk

r

)
|xk (mod N)⟩ ,

and in the summation, when the summation over s is performed, the sum calculated is a
geometric series. When k ̸= 0, the result vanishes due to periodicity of e2πim, and when k = 0,
the exponent is 1, and the sum is r terms, each 1, canceling the 1/r, and noting that x0 = 1,
the proof is complete.

The same argument proves eq. (5.45). In this case, the summation index shall be k′, and
the summation over s gives a rδkk′ .
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Ex. 5.14. Let us remember the derivation in the solution of ex. 5.7. We apply H⊗t to the
register holding j, so the circuit implements the mappings

|0⟩ ⊗ |0⟩ H⊗t⊗I7−−−−→ 1

2t/2
(|0⟩+ |1⟩)⊗t ⊗ |0⟩ = 1

2t/2

∑

j

|j⟩ ⊗ |0⟩

V7−→ 1

2t/2

∑

j

|j⟩|xj (mod N)⟩ .

To implement this V usign L3 gates, we �rst need a circuit that implements the mapping

|y⟩ 7→ |y + x2
k

(mod N)⟩
which we do as in box 5.2, using modular exponentiation, that requiresO(L) squaring operations
(implemented as in reversible computing, O(L2) gates), and in each step we need a controlled
addition, and there are L steps, so the total cost is O(L2). The circuit is as follows:

. . .

. . .

. . .

|j⟩

x x2

|0⟩ + + |xj⟩

Ex. 5.15. Let us write the prime factorisation of the two integers as

x = pα1
1 p

α2
2 . . . pαk

k , y = pβ11 p
β2
2 . . . pβkk .

The greatest common divisor of the two can be written as

gcd(x, y) =
∏

i

p
min{αi,βi}
i ,

as this divides both, and any prime on any higher power does not divide the one with the lowest
power. Similarly,

lcm(x, y) =
∏

i

p
max{αi,βi}
i ,

and
xy =

∏

i

pαi+βi
i .

Ex. 5.16. The integral is evaluated as follows,

Ix =

∫ x+1

x

1

y2
dy =

[
−1

y

]x+1

x

=
1

x
− 1

x+ 1
=

1

x(x+ 1)
,

and so

Ix −
2

3x2
=

x

x2(x+ 1)
− 2(x+ 1)

3x2(x+ 1)
=
x/3− 2/3

x2(x+ 1)
,

which is positive is x > 2/3. (The denominator is positive, the numerator is an increasing
function, and vanishes at x = 2).

Now we may write 1/x2 ≤ 3Ix/2, and so

∑

q prime

1

q2
<

∞∑

q=2

1

q2
≤ 3

2

∫ ∞

2

1

y2
dy =

3

2

[
−1

y

]∞

2

=
3

4
.
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Ex. 5.17. (1) If N is L bit long, then 0 ≤ N ≤ 2L − 1, so if N = ab, and a ≥ 2, then from
aL > 2L − 1 follows that b < L must hold.

(2) y = log2N is calculated with the following algorothm [12]: a, we divide N by 2 enough
times so that the result is between 1 and 2. If it is one, we are done, in O(L) steps. If not,
precision is enhanced, by squaring y a couple of times till the result is between 2 and 4, and
dividing that by 2, each time getting some additional bit of the fractional part of y, in the form
0 . . . 01 after the previous digits, the number of zeros is the number of squarings necessary.

The number x = y/b is calculated using the usual method of division on paper. We take
some bits from the beginning of y, until the number made up by those is above b, write that
divided by b (know small multiples of b, O(L) steps as b < L) to the beginning of x, and replace
it at the beginning of y with the remainder. As the length of y is reduced in each step, the
number of steps needed is O(L) (length of N), each step required O(L) operations, so the total
is O(L2).

The integer part of 2x may be calculated by multiplications by 2, as N has L bits, the
integer part of x is O(L). Now we need to enhance the result by calculating 2x

′
where x′ is

the fractional part of x to the precision where 1/2[x]. This can be done using Taylor-series, the
number of terms needed is O(L) because the precision of the kth term is 1/k!, log k! k log k, we
need 2L ∼ k!, so k < O(L), and each term consist of L-bit multiplications.

(3) With repeated squaring we may compute ub1, where m is a power of 3 close to b, and
then add the remining few multiplications. We multiply numbers of length L, and the number
of squarings is log2 b ∼ log2 L. Using, e.g., Karatsuba multiplication, this is below O(L2).

(4) As b < L, we loop over b, multiplying the number of steps by L.

Ex. 5.18. Factoring N = 91. The steps are as follows:

1. N is odd, proceed to step 2.

2. We need to check up to b = log2 91 ≈ 6.5. See ex. 5.17.

3. We choose the �random� number x=4. A quick calculation using Euclid's algorithm yields
gcd(4, 91) = 1, so it is co-prime, we may proceed to order-�nding.

4. The powers of 4 mod 91 are 1, 4, 16, 64, 74, 23, 1, so the order is r = 6. x3 = 64 ̸=
−1 (mod 91), we may proceed to gcd.

5. gcd(63, 91) = 7, a factor is found.

Ex. 5.19. The numbers below 15 are: 2 even, 3 prime, 4 = 22 and even, 5 prime, 6 even, 7
prime, 8 = 23 and even, 9 = 32, 10 even, 11 prime, 12 even, 13 prime, 14 even.

5.4 General applications of the quantum Fourier transform

Ex. 5.20. Let us use the periodicity of f as follows:

f̂(ℓ) =
1√
nr

N−1∑

x=0

e−2πiℓx/Nf(x) =
1√
N

n−1∑

m=0

r−1∑

x′=0

e−2πimℓ/ne−2πix′ℓ/Nf(k)

=
1√
n

n−1∑

m=0

e−2πiℓm/n 1√
r

r−1∑

x′=0

e−2πiℓx′/Nf(x′) .
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where N = nr and we have written x = mr+x′. The �rst sum is the sum of a geometric series,
and, unless n|ℓm, the sum formula shows that it vanishes. n|ℓm for all m if n|ℓ, i.e., ℓ is an
integer multiple of n = N/r, and then all the summands are 1, and the �rst sum contributes
n = N/r, and the result is

f̂(ℓ′n) =
N

r

1√
r

r−1∑

x′=0

e−2πiℓ′x′/rf(x′) =
N

r
f̃(ℓ′) ,

where f̃ is the Fourier transform of f on the shorter interval 0 ≤ x ≤ r − 1, or we may write

f̂(ℓ) =





N

r
f̃

(
ℓ

N/r

)
, if N/r|ℓ ,

0 otherwise .

In eq. (5.63) we use the inverse Fourier transform to express f(x), using a single period of
f . Note however that if x is outside the single period, x = mr + x′ then f(x) = f(x′), and
substituting into eq. (5.64) yields

|f(x)⟩ = 1√
r

r−1∑

ℓ=0

e2πiℓx/r|f̂(ℓ)⟩ = 1

r

r−1∑

ℓ=0

e2πiℓx
′/r|f̂(ℓ)⟩ = |f(x′)⟩ ,

as exp(2πiℓx/r) = exp[2πi(ℓx′/r + ℓm] = exp(2πiℓx′/r), i.e., the periodicity is recovered.

Ex. 5.21. (1) Let us apply Uy to the state |f̂(ℓ)⟩ de�ned in eq. (5.63),

Uy|f̂(ℓ)⟩ =
1√
r

r−1∑

x=0

e−2πiℓx/rUy|f(x)⟩ =
1√
r

r−1∑

x=0

e−2πiℓx/r|f(x+ y)⟩

=
1√
r

y+r−1∑

x′=y

e−2πiℓ(x′−y)/r|f(x)⟩ = e2πiℓy/r
1√
r

r−1∑

x=0

e−2πiℓx/r|f(x)⟩

= e2πiℓy/r|f̂(ℓ)⟩ .

where we have shifted the summation variable, x′ = x + y, used the fact that exp(2πiℓx/r)
and f(x) are both periodic, so the sum overlaps, and dropped the prime. The eigenvalue is
λℓ = exp(2πiℓy/r).

(2) Let us express the given state |f(x0)⟩ with the Fourier transform as

|f(x0)⟩ =
1√
r

r−1∑

ℓ=0

e2πiℓx0/r|f̂(ℓ)⟩ ,

and apply the black box part of the quantum phase estimation algorithm, implementing the
mapping

|j⟩ ⊗ ψ 7→ |j⟩ ⊗ U j
yψ .

At this point, the input to this mapping is

1√
N

∑

j

|j⟩|f(x0)⟩ ,
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with N = 2t, so the output is

1√
N

N−1∑

j=0

|j⟩U j
y |f(x0)⟩ =

N−1∑

j=0

r−1∑

ℓ=0

1√
Nr

e2πiℓx0/r|j⟩U j
y |f̂(ℓ)⟩ =

1√
Nr

N−1∑

j=0

r−1∑

ℓ=0

e2πijℓ/rλjℓ|j⟩|f̂(ℓ)⟩ ,

=
1√
Nr

N−1∑

j=0

r−1∑

ℓ=0

e2πijℓ/re2πiℓjx0/r|j⟩|f̂(ℓ)⟩ = 1√
r

r−1∑

ℓ=0

e2πijℓ/r|Ñℓx0/r⟩|f̂(ℓ)⟩ .

Applying the inverse Fourier transform to the �rst register allows us to measure Nℓx0/r, and
using the continued fraction method, therefore, r.

Ex. 5.22. Using the double periodicity of f ,

|f̂(ℓ1, ℓ2)⟩ =
r−1∑

x1=0

r−1∑

x2=0

e−2πi(ℓ1x1+ℓ2x2)/r|f(x1, x2)⟩

=
r−1∑

x1=0

sx1+r−1∑

x′=sx1

e−2πi[ℓ1x1+ℓ2(x′−sx1)]/r|f(x1, x′ − ℓx1)⟩ ,

where we have introduced the new summation variable x′ = sx1+x2. Note that f(x1, x
′−ℓx1) =

f(0, x′). Also, as f(x1, x2) = bx1ax2 and ar = 1 (mod r), and the exponential is also periodic
with period r, the summation variable may run from 0 to r − 1, yielding

|f̂(ℓ1, ℓ2) =
r−1∑

x1=0

r−1∑

x2=0

e−2πi[ℓ1x1+ℓ2(x2−sx1)]/r|f(0, x2)⟩ ,

and this sum vanishes unless ℓ1 − sℓ2 is an integer multiple of r, as in the case where it is not,
the sum over x1 may be performed using the summation formula for a geometric progression,
yielding zero. If ℓ1 − sℓ2 is an integer multiple of r, the sum over x1 yields r, and the result is

|f̂(ℓ1, ℓ2)⟩ = r
r∑

j=0

e−2πijℓ2/r|f(0, j)⟩ .

Ex. 5.23. Inserting formula (5.72) into (5.73), we need to evaluate four sums, of which the
one over ℓ1, collecting the terms only depending on ℓ1 is, and replacing the summation variable
x1 with x

′
1 in eq. (5.72), is

r−1∑

ℓ1=0

e2πiℓ1(x1−x
′
1)/r = rδx1,x′1 ,

and similarly the summation over ℓ2 yields another Kronecker delta, so the resulting formula is

1

r2

r−1∑

ℓ1=0

r−1∑

ℓ2=0

e2πi(ℓ1x1+ℓ2x2)/r|f̂(ℓ1, ℓ2)⟩ = |f(x1, x2)⟩ .

Ex. 5.24. In order to obtain both ℓ2s/r and ℓ2/r, and to apply thm. 5.1, one needs to choose
the number of bits such that 2−2L+1 ≤ 1/(2r2). In that case, s is obtained by dividing the two.
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Ex. 5.25. One possibility is to construct using reversible computation the functions, and then
uncomputation. The necessary number of gates is, for L bits, O(L) squarings to calculate one
exponentiation, one squaring is O(L2), then O(L) multiplications, again O(L2) cost, so a total
of O(L3) is needed.

Ex. 5.26. Let G = Zp1 × Zp2 × . . . ZpN .
Any irreducible unitary representation of the cyclic group Zp is 1 dimensional, and so on

the generating element has order p, and its representation is a phase, ρℓ(1) = eiϕℓ,0 , such that
ρℓ(0) = ρℓ(1)

p = eipϕℓ,0 = 1, i.e., ϕℓ,0 = 2πℓ/p, so the representation of an arbitrary element is

ρℓ(g) = e2πigℓ/p ,

0 ≤ g < p.
For G, a group element is given as G ∋ g = (g1, g2, . . . , gN) where 0 ≤ gi < pi. The

representations are indexed by ℓ1, . . . , ℓN , so

ρℓ1,...,ℓN (g1, . . . , gN) = e(2πi/|G|)∑i giℓi ,

where |G| = p1 · · · · ·pN . The Fourier and inverse Fourier transform formulae are for such groups

f̂(ℓ) =
1√
|G|

pi−1∑

gi=0

f(g)e(2πi/|G|)∑i giℓi ,

[see eq. (A2.9)] and

f(g) =
1

|G|

pi−1∑

ℓi=0

f̂(ℓ1, . . . , ℓN)e
−(2πi/|G|)∑i giℓi ,

[see eq. (A2.10)]. Comparing this with eq. (5.75), we can see that Nielsen and Chuang have
used gℓ as the short form of

∑
i giℓi where g = (g1, . . . , gN).

If K is a normal subgroup of G it is of the form K = Zpi1 × · · · × ZpiM where M ≤ N and
1 ≤ ik ≤ N , and {pi1 , pi2 , . . . , piM} ⊆ {p1, p2, . . . pN}. In this case, the sum in eq. (5.76) may
be rewritten as

|f̂(ℓ)⟩ = 1

|G|

pj−1∑

j ̸=ik,gj=0

e−(2πi/|G|)∑j gjℓj |f(gj, j ̸= ik)⟩
pk−1∑

gik=0

e−(2πi/|G|)∑k gik ℓik ,

as f being constant on cosets of K is equivalent to f being independent of gik , k = 1, . . . ,M .
The second sum in the last equation vanishes unless ℓik = 0, where these are de�ned by that
for these values these sums evaluate to |K|, as due to the orthogonality relation of characters
and the fact that the character of the trivial representation is 1, so the result is

|f̂(ℓ : ℓik = 0)⟩ = |K|
|G|

pj−1∑

j ̸=ik,gj=0

e−(2πi/|G|)∑j gjℓj |f(gj, j ̸= ik)⟩ .

By measuring ℓk, the subgroup K is the one de�ned by ik such that ℓik = 0, K =
∏

k Zpik .
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Ex. 5.27. This is Mosca's algorithm [13]. We shall start with a set of generators {a1, . . . , ak} ⊂
G. The aim is to �nd new generators, {b1, . . . , bℓ} ⊂ G, such that each of these generators alone
generates a prime-order cyclic group.

The method is applying the known version of the hidden subgroup problem (ex. 5.26). To
this end, �rst we replace the generators with ones that have a prime order. Let us assume that
the order of one of the generators, ai is pq, where (p, q) = 1 then apq = 1. In this case, according
to the Euclidean algorithm, there are r, s such that rp+ sq = 1, so (ap)r(aq)s = apq+rs = a. So,
replacing ai with a

p and aq (and hence increasing the number of generators) does not change
the generated group.

We shall now consider a mapping

g : Zkq → G , (x1, . . . , xk) 7→ ax11 · · · · · axkk
where q is the maximum of the orders of the generators. The mapping g may be used as an
input to the variant of the hidden subgroup problem where the group is already assumed to
be a subgroup of a product of prime-order cyclic subgroups, yielding a subgroup K. A set
of generators y1, . . . , yℓ ∈ Zkq/K can also be computed, and so {g(yi)|i = 1, . . . , ℓ} is a set of
generators of G with the desired property.

A Appendices

A.1 Notes on probability theory

Ex. A.1.1. The proof of Bayes' rule starts with the de�nition of conditional probability,

p(x|y) = p(x, y)

p(y)
=
p(y|x)p(x)

p(y)
= p(y|x)p(x)

p(y)
.

Ex. A.1.2. For a set of mutually exclusive events x,

p(y) =
∑

x

p(x, y) =
∑

x

p(y|x)p(x) ,

where we have used the de�nitions of the conditional probabilities, p(y|x) = p(x, y)/p(x).

Ex. A.1.3. Let us assume the contrary, that for all values x ofX such that p(x) > 0, x < E(X).
Let x0 the maximum of all these (as we are concerned with discrete variables taking one of a
�nite set of values, this exists), then

E(X) =
∑

x

xp(x) ≤
∑

x

x0p(x) = x0 < E(x) ,

which is a contradiction.

Ex. A.1.4. Linearity:

E(αX) =
∑

x

αxp(x) = α
∑

x

xp(x) = αE(X) ,

and

E(X + Y ) =
∑

x,y

(x+ y)p(x, y) =
∑

x,y

xp(x, y) +
∑

x,y

yp(x, y) =
∑

x

xp(x) +
∑

y

yp(y)

= E(X) + E(Y ) .
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Ex. A.1.5. For independent variables X and Y ,

E(XY ) =
∑

x,y

xyp(x, y) =
∑

x,y

xyp(x)p(y) =
∑

x

xp(x)
∑

y

yp(y) = E(X)E(Y ) .

Ex. A.1.6. Chebyshev's inequality is proven as follows:

∆2(X) = E(|X − E(X)|2) =
∑

x

|x− E(X)|2p(x)

=
∑

x:|x−E(X)|<λ∆(X)

|x− E(X)|2p(x) +
∑

x:|x−E(X)|≥λ∆(X)

|x− E(X)|2p(x)

≥
∑

x:|x−E(X)|<λ∆(X)

|x− E(X)|2p(x) +
∑

x:|x−E(X)|≥λ∆(X)

λ2∆2(X)p(x)

≥
∑

x:|x−E(X)|≥λ∆(X)

λ2∆2(X)p(x) = λ2∆2(X)
∑

x:|x−E(X)|≥λ∆(X)

p(x) ,

which, upon division by λ2∆2(X) yields the desired result.

A.2 Group theory

Ex. A.2.1. Let us assume that there is g ∈ G such that gr ̸= e for any non-zero integer r. In
this case, all gr must be distinct (otherwise, if gr1 = gr2 , r1 ̸= r2, then g

r2−r1 = e), and this is
an in�nite set, and subset of G, which is not possible, |G| <∞.

Ex. A.2.2. Let H ⊆ G, and g1,2 ∈ G. Then either g1H = {g1h|h ∈ H} and g2H are disjoint or
they are equal, as if g1H ∪ g2H ̸=, then there is h1, h2 such that g1h1 = g2h2, so g1h1h

−1
2 = g2,

so g2H = g1h2h
−1
2 H = g1H as h2 ∈ H. Also g ∈ gH for all g ∈ G, so the cosets form a division

of the total group.
All cosets have the same number of elements as H, as if it were not so, there would be

h1, h2 ∈ H, h1 ̸= h2, g ∈ G such that gh1 = gh2, but that is not possible, as in this case
gh1h

−1
2 = g, multiplied by g−1 yielding h1h

−1
2 = e, so h1 = h2.

As a result, the cosets have the same number of elements, |gH| = |H|, so |H| is a divisor of
|G|.

Ex. A.2.3. The elements {1, g, g2, . . . } form a (cyclic) subgroup of G. The order of this
subgroup is the order of g.

Ex. A.2.4. If y ∈ Gx, then there is a g ∈ G such that y = g−1xg. In this case Gy = {h−1yh|h ∈
G} = {h−1g−1xgh|h ∈ G} = Gx as all elements of g may be written as gh.

Ex. A.2.5. In an Abelian group, for any g, x ∈ G, g−1xg = g−1gx = x, so Gx{g−1xg|g ∈ G} =
{x}.

Ex. A.2.6. For any element g ∈ G, ⟨g⟩ = {1, g, g2, . . . } ≤ G is a subgroup, so if r is the order
of g then it is a divisor of |G|. If the latter is prime, they must agree.

Ex. A.2.7. Let G = ⟨g⟩ be cyclic subgroup and H ≤ G a subgroup. In this case, all elements
of h ∈ H are of the form of h = gk, so H = {e, gk1 , gk2 , . . . }. If H ̸= {1}, then there is a
minimal non-zero k. H is then generated by gk, and is therefore cyclic with order |G|/k. To
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see this, note that taking any two elements h1, h2 ∈ H, and considering elements of the form
hn1
1 h

n2
2 it is clear that what we get are all powers of the generator g with exponent n1k1+n2k2,

mod r = |G|. Using the Euclidean algorithm, the greatest common divisor d of k1 and k2 will
be among the powers obtained, so k1 = k′1d, k2 = k′2d, and so hi = (gd)k

′
i .

Ex. A.2.8. Let us assume that gn = gm, and for simplicity sake, assume m > n, and multiply
the equation with g−1 n times, yielding 1 = gm−n, which is only possible if r|m − n, and so
m = n(modr).

Ex. A.2.9. If g1, g2 ∈ xH, then gi = xhi, therefore g2 = xh2, x = g1h
−1
1 , so g2 = g1h

−1
1 h2 = g1h

where h = h−1
1 h2.

Ex. A.2.10. As cosets de�ne an equivalence relation on the group, each element belongs to
a coset and only one. Each coset has the same number of elements as multiplication with a
(sub)group element is a bijective mapping. Therefore the number of cosets is the number of all
group elements divided by the elements of the subgroup whose cosets we are considering (and
which is a divisor according to Lagrange's theorem), i.e., G : H = |G|/|H| where the notation
of [G : H] is used for the number of cosets.

Ex. A.2.11. (1) As a representation is a homomorphism, ρ(e) = I, therefore χ(I) = Tr ρ(e) =
Tr I = n.

(2) If G is a �nite group, then any element g has �nite order, r, such that gr = e. Also,
diagonalising the matrix of ρ(g) with a unitary transformation does not change the trace,
therefore the character. In this basis, the matrix satis�es ρ(g)r = I, so all its eigenvalues must
satisfy λri = 1, therefore, they are complex numbers of unit magnitude, and the trace is their
sum,

|χ(g)| = |Tr ρ(g)| = |
∑

k

λk| ≤
∑

k

|λk| = n .

(3) If |χ(g)| = n, the direction of the eigenvalues of ρ(g) must be the same in the complex
plane [see part (2)], and they have unit magnitude, so all eigenvalues are the same. Therefore,
the matrix is diagonal, and the eigenvalue is eiθ, where θ = 2π/r, and so ρ(g) = eiθI.

(4) χ(g−1hg) = Tr ρ(g)−1ρ(h)ρ(g) = Tr ρ(h) = χ(h) using the cyclic property of the trace.
(5) As g and g−1 commute, the matrices ρ(g) and ρ(g−1) can be diagonalised with the

same unitary transformation. In part (3) we have shown that the eigenvalues of the matrices
are complex numbers of unit magnitude, and as ρ(g−1)ρ(g) = I, they are reciprocals, i.e.,
conjugates, λk(g

−1) = λk(g)
∗, therefore, the same holds for the character, which is their sum,

the trace of the representation matrices.
(6) All the eigenvalues are algebraic numbers, as they satisfy λrk − 1 = 0, and the sum of

algebraic numbers is algebraic.

Ex. A.2.12. Let us de�ne another scalar product on the n-dimensional complex vector space
by

⟨x, y⟩G :=
∑

g∈G
⟨ρ(g)x, ρ(g)y⟩ .

This scalar product is clearly invariant under the group action. Scalar products correspond to
positive operators, i.e.,

⟨x, y⟩G = ⟨x,A†Ay⟩ = ⟨Ax,Ay⟩ ,
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and the invariance reads
⟨Aρ(g)x,Aρ(g)y⟩ = ⟨Ax,Ay⟩ ,

writing x′ = Ax, y′ = Ay,

⟨Aρ(g)A−1x′, Aρ(g)A−1y′⟩ = ⟨x′, y′⟩ ,

demonstrating that AρA−1 is unitary.

Ex. A.2.13. For a �nite group, for all g ∈ G, g|G| = e (see excer. A2.6), so the same
holds for the representation matrices, ρ(g)|G| = I. Therefore, the representation consist of
commuting diagonalisable matrices, so they can be diagonalised simultaneously. In the basis
that diagonalised the representation, all the basis vectors correspond to 1-dimensional invariant
subspaces, so for an irreducible representation there may be only one basis vector.

Note: �nite order matrices, i.e., matrices A such that there is an integer k, Ak = I are
diagonalisable, as the minimal polynomial of the matrix is a divisor of xk−1, and this polynomial
has simple roots.

Ex. A.2.14. For any element g ∈ G let C(g) = {h−1gh|g ∈ G} denote the conjugacy class of
the element. We shall also de�ne the matrix c(g) =

∑
h∈C(g) ρ(h).

We shall show that the matrix c(g) commutes with the representation,

ρ(g′)c(g) =
∑

h−1gh∈C(g)

ρ(g′)ρ(h−1gh) =
∑

h

ρ(g′h−1gh) =
∑

h

ρ((hg′−1)−1ghg′−1g′)

=
∑

h

ρ(h′−1gh′g′) =
′∑

h

ρ(h′−1gh′)ρ(g′) = c(g)ρ(g′).

According to Shur's lemma, therefore, c(g) must be a constant times I, and using the fact
that the trace of ρ(g) is the character, constant on C(g) (see excer. A2.11), c(g) = cgI, cg =
|C(g)|χ(g)/dρ.

Considering the sum
∑

g∈G χ(g
−1)ρ(g), we may perform the sum by conjugacy class, and

on each class insert the result from above, yielding

∑

g

χ(g−1)ρ(g) =
1

d

∑

i

|C(gi)|χ(g−1)χ(g)I ,

where gi is a set of representative elements from all characteristic classes. The trace of this is,
on one hand, using the fact that the character is a class function,

Tr
∑

g

χ(g−1)ρ(g) =
∑

g

χ(g)2 = |G| ,

therefore
n

dρ
=
∑

i

|C(gi)|χ(g−1)cgi .

The rest is number theory. It is shown that the RHS is algebraic integer and rational, therefore,
integer. See Ref. [8]. For the algebraic integer, it is used, that characters are sums of roots of
unity due to the fact that the order of an element of a �nite group is �nite.
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Ex. A.2.15. Setting i = j and k = l in eq. (A2.3) yields
∑

g∈G
χp(g−1)χq(g) = |G|δpq .

Also, according to excer. A2.11, characters are class function, and the sum over the group may
be written as

∑
g∈G =

∑
i

∑
g∈C(gi))

where gi are representatives from each conjugacy class, on

each class, the character is constant, χ(g) = χ(gi) = χi is g ∈ C(gi), and als χ(g−1) = χ(g)∗,
yielding the relation ∑

i

riχ
p∗
i χ

q
i = |G|δp,q .

If we introduce the matrix Uiq =
√
ri/|G|χpq , the above relation may be written as U †U = I,

and then follows UU † = I, which has the matrix elements
√

ri
|G|

√
rj
|G|

∑

p

χpiχ
q∗
j = δij .

Ex. A.2.16. Let us enumerate the perturbations as p0 to p5 corresponding to 123, 231, 312,
213, 132, 321, respectively. The multiplication table of the group is as follows:

p0 p1 p2 p3 p4 p5

p0 p0 p1 p2 p3 p4 p5
p1 p1 p2 p0 p5 p3 p4
p2 p2 p0 p1 p4 p5 p3
p3 p3 p4 p5 p0 p1 p2
p4 p4 p5 p3 p2 p0 p1
p5 p5 p3 p4 p1 p2 p0

The trivial representation, ρ(g) = 1 is clearly a representation, and it is easy to verify that
ρ = 1, 1, 1,−1,−1,−1 is also a representation (sign, assigns +1 to cyclic and -1 to anti-cyclic
permutations). The matrix representation is veri�ed by computation, and its character (trace
of the matrices is) 2, -1, -1, 0,0,0. Orthogonality is clearly satis�ed.

Ex. A.2.17. If the regular representation wasn't faithful there would be an element g ̸= e also
represented by the identity matrix. However, that would mean that it maps all element h ∈ G
to themselves, and the action is also the group action, i.e., gh = h for all h ∈ G. This only
holds for e in a group.

Ex. A.2.18. For the regular representation, all matrix elements are either 1 or 0. A 1 in
the i, j element in the matrix ρ(g) means that ggj = gi, so in the diagonal a 1 would mean
that a group element leaves one invariant, which is only possible for the unit (if gg′ = g′, this
multiplied by g′−1 yields g = e). So, all representation matrices have 0 diagonals except that of
the unit, and the representation is |G| dimensiona, so χ(e) = |G| and the rest is χ(g ̸= e) = 0.

Ex. A.2.19. Inserting the character of the regular representation (see excer. A2.18) into eq.
(A2.6) yields

cp =
1

|G|
r∑

i=1

riχ
reg∗
i χρi = χρe = dρ ,

as only the conjugate class of e contributes, as h−1eh = e for all h ∈ G, this class has 1 element,
re = 1, and on the unit element a character of a representation assumes the dimension of the
representation (see excer. A2.11).
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Ex. A.2.20. As the regular representation contains all irreducible representations dρ times,
its matrices can be brought to a block-diagonal form, where each irrep is appears dρ times,
yielding

χreg =
∑

ρ∈Ĝ

dρχ
ρ ,

and we know that χreg(g) = |G|δge.

Ex. A.2.21. Evaluate the formula (A2.8) at g = e, and note that χρ(e) = dρ, yielding the
desired result.

Ex. A.2.22. Substituting eq. (A2.10) into (A2.9) yields

f̂(ρ) =

√
dρ
|G|

∑

g∈G
ρ(g)

1√
|G|

∑

ρ′∈Ĝ

√
dρ′ Tr f̂(ρ

′)ρ′(g−1) .

and exchanging summations, writing out indices yields

[f̂(ρ)]ij =
∑

kl

∑

ρ′

√
dρdρ′

|G| [f̂(ρ′)]kl
∑

g∈G
[ρ(g)]ij[ρ

′(g)]lk

and according to eq. (A2.3), the sum over g ∈ G yields (|G|/dρ)δikδjlδρρ′ , and therefore the

remaining sums yield [f̂(ρ)]ij.

Ex. A.2.23. The representations are labelled by the coe�cient h in the exponent, and the
value of the Fourier transform for the representation ρh is

f̂(h) = f̂(ρh) =
1

N

∑

g

f(g)ρh(g) =
1

N
f(g)e−2πigh/N ,

as dρh = 1, |G| = N , and

f(g) =
1√
N

∑

h

f̂(h)e2πihg/N ,

as for a 1d representation, the trace is not needed.
The representations for h = 0, 1, . . . , N−1 are inequivalent (as their character is orthogonal),

and there are no more representations, as for h = N we get the same matrices as for h = 0 due
to the periodicity of the complex exponential. Also

∑
h d

2
h =

∑
h 1 = N .

Note: the group is the addition with remainder.

Ex. A.2.24. The elements of the Fourier transform are

f̂0 =
1√
6

5∑

i=0

fi ,

f̂1 =
1√
6

5∑

i=0

fi(−1)pi ,

f̂2 =

(
2f0−f1−f2−2f3+f4+f5

2
√
3

−f1+f2+f4−f5
2

f1−f2+f4−f5
2

2f0−f1−f2+2f3−f4−f5
2
√
3

)
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where by (−1)pi we denote the sign of a permutation (the 1st representation in excer. A2.16)
and fi = f(pi). Listing the elements of the matrix f̂2 row-wise the matrix of the Fourier-
transformation is 



1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

− 1√
6

− 1√
6

− 1√
6

1√
6

− 1
2
√
6

− 1
2
√
6

− 1√
6

1
2
√
6

1
2
√
6

0 −1
2

1
2

0 1
2

−1
2

0 1
2

−1
2

0 1
2

−1
2

1√
3

− 1
2
√
3

− 1
2
√
3

1√
3

− 1
2
√
3

− 1
2
√
3




The matrix of the inverse transformation is the transpose of the above matrix, and

f0 =
1√
6
(f̂0 + f̂1 +

√
2(f̂2,11 + f̂2,22)) ,

f1 =
1√
6
(f̂0 + f̂1)−

1√
12

(f̂2,11 + f̂2,22)−
1

2
(f̂2,12 − f̂2,21) ,

f2 =
1√
6
(f̂0 + f̂1)−

1√
12

(f̂2,11 + f̂2,22) +
1

2
(f̂2,12 − f̂2,21) ,

f3 =
1√
6
(f̂0 + f̂1)−

1√
3
(f̂2,11 − f̂2,22) ,

f4 =
1√
6
(f̂0 + f̂1) +

1√
12

(f̂2,11 − f̂2,22) +
1

2
(f̂2,12 + f̂2,21) ,

f5 =
1√
6
(f̂0 + f̂1) +

1√
12

(f̂2,11 − f̂2,22)−
1

2
(f̂2,12 + f̂2,21) .

A.3 The Solovay-Kitaev theorem

Ex. A.3.1. The newly de�ned distance function D(U, V ) is the sum of eigenvalues of |U −V |,
whereas E(U, V ) = ∥U − V ∥ is the absolute value of the maximal eigenvalue of U − V .

When calculating the eigenvalues of the matrix M = Rn̂(ϕ) − Rm̂(θ), the eigenvalues are
calculated as

λ1,2 = −t±
√
t2 − d ,

where t = Tr (Rn̂(ϕ)−Rm̂(θ))/2 and d = detRn̂(ϕ)−Rm̂(θ), and the term (1/4 of the discrim-
inator) under the square root is

t2 − d =

(
cos

θ − ϕ

2
− cos

θ + ϕ

2

)
n̂ · m̂+

cos θ + cosϕ

2
− 1 ,

which is negative, so the two eigenvalues are complex conjugates, their absolute values are
equal, which completes the proof.

Ex. A.3.2. Using the series expansion of the exponential to second order,

e−iA = I − iA− 1

2
A2 +O(ε3) ,

etc.,
[
e−iA, eiB

]
=

[
I − iA− 1

2
A2, I − iB − 1

2
B2

]
+O(ε3) = I − [A,B] +O(ε3) ,
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and
e−[A,B] = I − [A,B] +O(ε4) ,

and eq. (A3.9) follows from here.

Ex. A.3.3. Let us note �rst, that the explicit form of the parametrisation follows from ex-
cer. 2.35,

u(a) = exp

(
− i

2
a · σ⃗

)
= cos

a

2
I − iâ · σ⃗ sin a

2
,

where a = |a| and â = a/a.
We now use the results of excer. A.3.1, and calculate D(u(x, u(y)) = 2E(u(x, u(y)) as

follows:
E(u(x), u(y)) = max

ψ:∥ψ∥=1

〈
ψ
∣∣(eix·σ⃗ − eiy·σ⃗

) (
e−ix·σ⃗ − e−iy·σ⃗)∣∣ψ

〉1/2

and simplify the operator whose expectation value is calculated as

(
eix·σ⃗ − eiy·σ⃗

) (
e−ix·σ⃗ − e−iy·σ⃗) = 2−

(
eix·σ⃗e−iy·σ⃗ + eiy·σ⃗e−ix·σ⃗) ,

= 2
[
1− cos

x

2
cos

y

2
− sin

x

2
sin

y

2
x̂ · ŷ

]
I ,

where we have used the explicit form of the parametrisation and x̂ · σ⃗ŷ · σ⃗+ ŷ · σ⃗x̂ · σ⃗ = 2x̂ · ŷ,
yielding the desired result [10].

Ex. A.3.4. In the above formula setting y = 0 and using cos(x/2) = 1− 2 sin2 |x/4|.

Ex. A.3.5. When the two vectors are small enough, we use the following replacements: cos x
2
=

1− x2/8 +O(ε4), sinx/2 = x/2 +O(ϵ3) yielding

D(u(x), u(y)) = 2
√
2

(
x2

8
+
y2

8
− 1

8
x · y

)1/2

+O(ϵ3) ,

and
∥x− y∥ =

(
x2 + y2 − 2x · y

)1/2
,

which agrees.

Ex. A.3.6. To approximate an element of SU(2) with a sequence of elementary gates, i.e.,
words of a generating set G, we use the following steps: if a zeroth approximation is needed, we
choose the nearest element from G. Assuming we have an nth approximation of the operator
U to be approximated, we construct the next approximation by writing the error in the form
∆ = UU †

n, and then decompose this as ∆ = VWV †W † in such a way that the norm of U , V is
small enough, and approximate those to the nth level, and �nally get Un+1 = VnWnV

†
nW

†
nUn.

For details, see Ref. [11].

A.4 Number theory

Ex. A.4.1. If a|b and b|c, this means that ∃n,m such that b = na and c = mb, so c = nma,
and noting that nm is an integer, this is the de�nition of a|c.

Ex. A.4.2. If d|a and d|b, this means that ∃n,m such that a = nd, b = md, so ax + by =
ndx+mdy = (nx+my)d, therefore d|ax+ by.
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Ex. A.4.3. If a|b then ∃n such that na = b. If a, b > 0, then so is n, and, as it is an integer,
n ≥ 1, so a ≤ na = b. Cosequently, if a|b and b|, then a ≤ b and b ≤ a, implying a = b.

Note that if the positivity condition is dropped, then a = −b is also possible, but the above
argument may be used for |a| and |b|.
Ex. A.4.4. 697 = 17 · 41 and 36300 = 22 · 3 · 52 · 112.
Ex. A.4.5. For p prime, any integer x in the range 1, . . . , p−1 has gcd(x, p) = 1 as all divisors
d of x are d ≤ x and the divisors of p are only p > x and 1.

In the case of n = p2, all x ∈ {1, . . . , n − 1} have gcd(x, n) = 1 except p, 2p, . . . , p2, which
have gcd(kp, p2) = p for p = 1, 2, . . . , p, so the classes that have multiplicative inverses are

{1 ≤ k ≤ p2 − 1|gcd(k, p2) = 1} = {1 ≤ k ≤ p2 − 1|p ̸ |k} .

Ex. A.4.6. Looping over the remainders from 1, . . . , 24: the result is 17−1 = 17 (mod 24).

Ex. A.4.7. Note that (n+ 1)(n− 1) = n2 − 1 ≡ −1 (mod n2), so n2 − (n− 1) = n2 − n+ 1 =
n(n−1)+1 is the inverse of n+1. Veri�cation: (n+1)(n2−n+1) = n3+1 = nn2+1 ≡ 1 (mod n).

Ex. A.4.8. If ab = ab′ = 1 (mod n) then ab = kn+1 and ab′ = kn′+1 so a(b− b′) = (k−k′)n,
and as a has a multiplicative inverse, its gcd with n is 1, so the only way n|a(b−b′) is if n|(b−b′).
Ex. A.4.9. Let us write the prime factorisations as a = pj11 p

j2
2 . . . p

jn
n and b = pk11 p

k2
2 . . . pknn (we

may write the same primes in both cases allowing 0 exponents). Then gcd(a, b) = p
min{j1,k1}
1 ·

p
min{j2,k2}
2 . . . p

min{jn,kn}
n .

In the example: 6825 = 3 ·52 ·7 ·13 and 1430 = 2 ·5 ·11 ·13, so gcd(6825, 1430) = 5 ·13 = 65.

Ex. A.4.10. As 187 = 11 · 17, the Euler-function assumes the value φ(187) = φ(11)φ(17) =
10 · 16 = 160.

Ex. A.4.11. Let �rst n = pα, then the divisors of n are pα
′
, α′ = 0, . . . , α − 1. According to

eq. (A4.23), φ(pα) = pα−1(p− 1), so the right side of eq. (A4.24) is

∑

d|n
φ(d) = 1 +

α∑

α′=1

pα
′−1(p− 1) = 1 + (p− 1)

pα − 1

p− 1
= pα .

For the general case, let us consider the prime factorisation of n and its divisors, n = pα1
1 . . . pαk

k .
In this case, we have a multiple sum, in which we may use the multiplicative property, so

∑

d|n
φ(d) =

α1∑

β1=0

· · ·
αk∑

βk=0

φ(pβ11 . . . pβkk ) =

α1∑

β1=0

φ(pβ11 ) · · ·
αk∑

βk=0

φ(pβkk )

and use the case we have already shown to complete the proof.

Ex. A.4.12. The elements of Z∗
n are

Z∗
n = {k ∈ {1, . . . , n− 1}| gcd(k, n) = 1} ,

so it is clear that |Z∗
n| = φ(n). It is a group, (1) if k, ℓ ∈ Z∗

n then kℓ ∈ Z∗
n, as if gcd(kℓ, n) ̸= 1

then there is a prime p|gcd(kℓ, n), so p|n and p|kℓ, so either p|k or p|ℓ which would lead to
p|gcd(k, n) or p|gcd(ℓ, n), leading to a contradiction with both gcd's being 1. (2) All elements
have inverses (by de�nition). (3) There is a unit, 1 ∈ Z∗

n.
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Ex. A.4.13. (1) It is generally true that the powers of any group element form a subgroup. It
is obviously closed to multiplication, all elements have an inverse due to Thm. A4.9, and the
unit is included. (2) The size of the subgroup is the order of a, as higher powers simply repeat
the sequence. (Note: this is a cyclic subgroup.)

Ex. A.4.14. If g ∈ Z∗
n is a generator, ⟨g⟩ = {1, g, g2, . . . } = Z∗

n, then according to ex. A.4.13,
the subgroup formed by the powers of g is the full group. The order of the subgroup is the
order of g, and the order of the full group is φ(n), so the two must agree.

Ex. A.4.15. The order r of any element a ∈ Z∗
n is the order of the subgroup formed by the

powers of a according to ex. A.4.13. The order of the full group Z∗
n is ϕ(n), so according to

Lagrange's theorem A2.1, r|φ(n), i.e., ∃k ∈ N s.t. rk = φ(n). In this case, aφ(n) = ark =
(ar)k = 1k = 1 (mod n), which is Lagrange's theorem A4.9.

Ex. A.4.16. According to thm. 4.9, xφ(N) = 1 (mod N). The de�nition of the order is that
it is the minimal positive integer o such that xo = 1 (mod N). Consequently, for any multiple
ko of o holds that xko = (xo)k = 1 (mod N). If φN wasn't a multiple of o, then we could take
the remainder of φ(N) with o as φ(N) = ko + r, and so xφ(N) = xko+r = xkoxr = xr (modN)
would hold, and so xr = 1 (mod N) as well, which contradicts the minimality of o.

(Note: the fact that the order divides φ(N) follows also from Lagrange's theorem, see
ex. A.4.15.)

Ex. A.4.17. Let us assume there is an e�cient way to factor integers. Let N = pα1
1 . . . pαn

n . The
order of x is as follows: we know that the order r of x is a divisor of ϕ(N) =

∏
k p

αk−1
k (pk − 1).

Knowing the factors of N and ϕ(N) =
∏

ℓ q
βℓ
ℓ , we only need to check its divisors, i.e., numbers

with the same prime factors qℓ and exponents below or equal βℓ.

Ex. A.4.18. Following the split and invert technique

19

17
= 1 +

1

8 + 1
2

,

and
77

65
= 1 +

1

5 + 1
2+ 1

2+1
2

.

Ex. A.4.19. Let us verify the equality for n = 1, in this case p1 = 1 + a0a1, q1 = a1, p0 = a0,
q0 = 1, so

q1p0 − p1q0 = a1a0 − (1 + a0a1) · 1 = −1 .

Let us assume the equality has been proven for n = 1, . . . , N − 1 and perform the induction
step, by inserting the recursive formulae (A4.41,42) for pN and qN ,

qNpN−1 − pNqN−1 = (aNqN−1 + qN−2)− (aNpN−1 − pN−1qN−1)

= aN(qN−1pN−1 − pN−1qN−1) + qN−2pN−1 − pN−2qN−1 = −(−1)N−1 ,

which completes the proof.
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A.5 Public key cryptography and the RSA cryptosystem

Ex. A.5.1. Let us encrypt the alphabet as follows: `a' 7→ 2, `z' 7→ 27, and store these numbers
on 5 bits. Then �quantum� is encoded as 18, 22, 2, 15, 21, 22, 14. Now p = 3, q = 11, so
n = pq = 33 and φ(n = 33) = (p − 1)(q − 1) = 20. We need to choose and integer e relative
prime to this, such as 7. The multiplicative inverse is d = 3, as 7 · 3 = 21 = 1 (mod 20). The
encryption function is x 7→ xe (mod n) which yields for �quantum� 6, 22, 29, 27, 21, 22, 20.

Note: we started the encoding from 2 because 0 and 1 are mapped into themselves.

Ex. A.5.2. The order r is a divisor of φ(n), and we have ed = 1 (mod φ(n)), so ed =
kφ(n)+1 = k′r+1, where k′ = kφ(n)/r is an integer. This means that d is also a multiplicative
inverse of e mod r, so d′ = d (mod r) as the multiplicative inverse in a group is unique.
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