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9.3. Cartan's exterior covariant derivation

I think what makes this hard is mixing index and matrix, index and vector notations, writing
out some sums and not others.

9.3a. Vector-valued forms

A vector valued form is de�ned as a fully anti-symmetric multi-linear mapping from a vector
space to another one, e.g., in the example of the text,

A : TM ⊗ · · · ⊗ TM → TM .

Choosing a frame e = {ei : i = 1, . . . , n} in the target space, and basis forms σi in the dual of
the domain, such a mapping can be expanded as

A =
∑
i

∑
J−→

Ai
j1,...,jp

ei ⊗ σj1 ∧ · · · ∧ σjp .

The same set of components belong to a lot of di�erent mappings, e.g., to one TM×TM →
TM bilinear, one TM⊗TM → TM linear, TM → TM⊗T ∗M linear, etc. These are identi�ed,
and often the same letter is used for them.

The example given, the one-form dr is a vector-valued one-form, given as

dr = (dx1, dx2, dx3)T

is in a mixed notation on the RHS: component (matrix) for r = (x1, x2, x3)T , and index-free
(abstract) for the forms dxi.

The other example is
dS = (dy ∧ dz, dz ∧ dx, dx ∧ dy)T ,

which is a vector-valued 2-form, dS ∈ Γ(TM ⊗ T ∗M ∧ T ∗M). Its components are

ϵijk ,

which helps us write it as
dS(A,B) = g−1(iBiAvol) ,

or identifying vol as a mapping from TM ⊗ TM ⊗ TM → R and as TM ⊗ TM → T ∗M ,
(A,B) 7→ vol(A,B, ·), we obtain dS(A,B) = g−1vol(A,B, ·), so

dS = g−1vol .
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9.3b. The covariant di�erential of a vector �eld

The �rst thing introduced is a set of connection one-forms,

ωk
j =

∑
r

ωk
rjσ

r .

This is again mixing index and abstract notations, it has indices k and j labelling the one-forms,
and they are all one-forms. One could say that on the RHS, k and j are labels, r a (summation)
index.

As the covariant derivative of a vector has components (in a coordinate frame)

∇jv
i = ∂jv

i + ωi
jkv

k ,

or in a general frame
∇jv

i = ek(v
i) + ωi

jkv
k ,

we may obtain the vector �eld itself,

∇jv =
(
ek(v

i) + ωi
jkv

k
)
ei ,

or for an arbitrary vector X = Xjej,

∇Xv = Xj
(
ek(v

i) + ωi
jkv

k
)
ei =

(
ek(v

i) + ωi
jkv

k
)
eiσ

j(X) ,

i.e.
∇v =

(
ek(v

i) + ωi
jkv

k
)
ei ⊗ σj ,

is a vector-valued one-form. In particular, we may apply this to ej, whose coordinates are
constant,

∇ej =
∑
i,k

ωk
jiek ⊗ σi ,

which is a vector valued 1-form with a label j, whose coe�cients, when expandig w.r.t. ek are
the connection 1-forms,

∇ej =
∑
k

ek ⊗ ωk
j , ωk

j =
∑
i

ωk
ijσ

i .

With the connection one-forms, we may write the covariant derivative of an arbitrary vector
v = ejv

j as

∇v = ∇(ejv
j) =

∑
j

ej ⊗ dvj +
∑
j

∇ejv
j =

∑
k

ek ⊗

(
dvk +

∑
k

ωk
jv

k

)
,

or, in mixed component and abstract notation,

∇vi = dvi + ωi
kv

k .
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9.3c. Cartan's structural equations

In this section, the notational di�culty is a new notation. The tensor product and the wedge
(exterior) products are extended to tensor-matrix and wedge-matrix products, i.e., in eq. (9.29)
and above

∇e = e⊗ ω

is meant in such a way: e = (e1, . . . , en) is a row vector of vector �elds, and ω = {ωj
k} is a

matrix of one-forms. In the equation above, there is a �tensor-matrix� product,

∇e = ∇(e1, . . . , en) = (∇e1, . . . ,∇en) = (ek ⊗ ωk
1, . . . , ek ⊗ ωk

n) = (ek)⊗ (ωk
j) = e⊗ ω .

Similarly,

dσ = (dσ1, . . . , dσn)T = (−ωi
k ∧ σk + τ i) = −(ωi

k) ∧ (σk) + (τ i) = −ω ∧ σ + τ .

For the last equation in the section

∇v = ∇(ev) = ∇
[
(ei)(v

i)T
]
= (ei)⊗ (∇vi)T = (ei)⊗

[
(dvi) + (ωi

k)
T (vk)

]
= e⊗ (dv + ωv) .

9.3d. The exterior covariant di�erential of a vector-valued form

The notation is a bit confusing. Why ⊗∧ and not ∧? The matrix-tensor product is used in

∇α =
∑
i

ei ⊗ (dαi +
∑
r

ωi
r ∧ αr) = e⊗ (dα + ω ∧ α) .

The coordinate-free de�nition is more clear.

14.3a. Tangential and normal di�erential forms

The book [1] de�nes a form αp tangent to a submanifols (specially, to the boundary ∂M) of a
compact Riemannian manifold normal i� α(T1, . . . ,Tp) = 0 for all vector �elds Ti tangent to
S.

A form is de�ned normal i� its Hodge dual is tangent, i.e., i� ∗α(T1, . . . ,Tn−p) = 0 for all
vector �elds Ti tangent to S. I would like to clarify the meaning of this a bit. The Hodge dual
is de�ned as follows,

∗α = vol(A, · · · ) ,

which is meant as follows: A denotes the upper-index tensor corresponding to α,

Ai1,...,ip = gi1,j1 · · · gip,jpαj1,...,jp ,

and inserting A into the volume form is the form with components

(vol(A, · · · ))i1,...,in−p = Aj1,...,jp
√

|g|ϵj1,...,jp,i1,...,in−p .

This is equivalent to expressing A on the basis spanned by some basis e1, . . . , ek tangent to S,
and ek+1, . . . , en transversal, and

∗α(v1, . . . ,vn−p) = Ai1,...,ipvol(ei1 , . . . , eip ,v1, . . . ,vn−p) .
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This being normal to S means that

0 = ∗α((T1, . . . ,Tn−p) = Ai1,...,ipvol(ei1 , . . . , eip ,T1, . . . ,Tn−p) .

This means that only those components of Ai1,...,ip may be non-zero, where ei1 , . . . , eip forms a
linearly dependent set together with any eip+1 , . . . , ein arbitrarily chosen basis vectors tangent
to S. This always holds if n− p > k. Otherwise, it su�ces to consider i1 < i2 < . . . , ip, so we
get that at least for all i1 > k, Ai1<i2<···<ip = 0. More generally, only such components can be
nonzero where i1, . . . , ik−n+p ≤ k. What we see is that in the case n− p ≤ k, being tangent is
a bit stronger condition then saying that g−1α(·,v2, . . . ,vp) is tangent to the submanifold.

15.4a. Left-invariant �elds generate right translations

To proove the title of the chapter, we need to calculate the action of ϕt : G → G where ϕt is
the �ow of a left-invariant �eld X.

The de�nition of a left-invariant �eld is that Xg = Lg∗Xe. Let us represent the vector
Xe with a curve ge, such that ge(0) = e, g′e(0) = Xe. Similarly gg for Xg: gg(0) = g and
g′g(0) = Xg = Lg∗Xe = dgge(0)/dt|t=0, so gg(t) = gge(t) is such a curve.

Considering the de�ntion of ge: ge(0) = e, dge(t)/dt|t=0 = Xe, one such curve is ge(t) =
exp tXe.

The de�niton of �ow is that ϕt is a G → G mapping for all t, and ϕ0(g) = g and dϕ0(g) =
Xg = dgge(t)/dt|t=0. Note that this is also satis�ed by gg(t), so

ϕt(g) = gg(t) = gge(t) = g exp tXe = Rexp tXe(g) .

The vanishing bracket of a left-invariant �eld Xl and a right-invariant one Yr follows from
the expression of the bracket,

[Xl,Yr]g = LXY = lim
t→0

Yϕt(g) − ϕt∗Yg

t
= 0 ,

according to eqs. (4.4) and (4.1), and the limit vanishes, as the de�nition of the right-invariance
of Y is that Yg = Rg∗Ye, and so ϕt∗Yg = ϕt∗Rg∗Ye, and ϕt(Rg(h)) = hg exp tX = Rϕt(g)(h),
so ϕt∗Yg = Rϕt(g)∗Ye = Yϕt(g).

Do right-invariant �elds generate left-translations? Consider now the curve g̃g(t) = ge(t)g.
This has the properties g̃g(0) = g and g̃′g(0) = Rg∗g

′
e(0) = Rg∗Ye if now we choose ge(t) =

exp tYe.
Let Y be a right-invariant vector �eld, Yg = Rg∗Ye, and let us compare the properties of

ϕt(g) where ϕt : G→ G is now the �ow of the right-invariant vector �eld Y, with the properties
ϕ0(g) = g and dϕt(g)/dt|t=0 = Yg = Rg∗Ye. Notice that this holds for g̃g(t) too,

ϕt(g) = ge(t)g = exp tYeg = Lexp tYeg .

This may be used to give another proof of the vanishing of the commutator of right- and
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left-invariant vector �elds, using Theorem (4.12),

[Xl,Yr]gf =
d

dt
f(ϕY

−
√
t
(ϕX
−
√
t
(ϕY√

t
(ϕX√

t
(g)))))

∣∣∣∣
t=0

=
d

dt
f(Lexp−

√
tYe

(Rexp−
√
tXe

(Lexp
√
tYe

(Rexp
√
tXe

(g)))))

∣∣∣∣
t=0

=
d

dt
f(exp(−

√
tYe) exp(

√
tYe)g exp(

√
tXe) exp(

√
tXe))

∣∣∣∣
t=0

=
d

dt
f(g)

∣∣∣∣
t=0

= 0 .

16.3a. Connection in a vector bundle

A section of a bundle π : E →M is de�ned as follows. It is a mapping ψ :M → E, x 7→ ψ(x)
such that π ◦ ψ = idM , i.e., π(ψ(x)) = x p ∈M .

What is then an E valued 1-form? it is a mapping ψ : M × (TM)p such that π ◦ ψ :
M × (TM)p = idm ⊗ 1, where 1 here the constant 1 function on (TM)n, i.e., for any x ∈ M ,
v1, . . . , vp ∈ TxM , ψx(v1, . . . ,vp) ∈ π−1(x).

17.1b. Principal bundles and frame bundles

This section is concerned with the de�nition and properties of the frame bundle. The principal
bundle is de�ned as a bundle π : P → M where each �ber is a group G, and the transition
functions act by left translation, meaning that if two local trivialisations π−1(U) ∼= U ×G and
p−1(V ) ∼= V ×G and π(p) ∈ U ∩ V (or, equivalently, p ∈ π−1(U) ∩ π−1(V )), then

P ∈ p = ϕU(x, gU) = ϕV (x, gV )

and in this case there is a function cV U : G → G such that gU = cUV (x, gV ), in the case of a
principal bundle this is of the form gU = cUV (x)gV , cUV (x) ∈ G.

An equivalent de�ntion could be given using theorem (17.8) in sec. 17.1c, that a principal
G-bundle is such a bundle that the �ber is the group G, and that there is a group action

R̂ : G× P → P , (g, p) 7→ R̂g(p)

such that R̂h ◦ R̂h = R̂gh. In the case of the principal G-bundle this action must be transitive
and free (no kernel).

17.1c. Action of the structure group on a principal bundle

Some remarks for the de�nition of the fundamental vector �eld: let (P,M, π,G) be a principal
G-bundle.
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Theorem (17.8) could be reformulated as follows. In a local trivialisation of the bundle,
U ⊂M ,

π−1(U) = ΦU(U ×G) ,

it is possible to de�ne left and right actions of G on the bundle locally by g ∈ G, Lloc
g : G→ G,

ΦU(x, h) 7→ ΦU(x, gh) and Rloc
g : G → G, ΦU(x, h) 7→ ΦU(hg). Theorem (17.8) shows that

of these, the right action can be de�ned globally, due to the commutativity of left and right
action, and that the sewing functions cUV act from the left.

The fundamental vector �elds are de�ned as the tangent vectors of the curves arising from
the composition of the right action of the group with a 1-parameter subgroup of G. Let g(t) ∈ G
a one-parameter subgroup, g(0) = e, g(t1+ t2) = g(t1)g(t2). In this case, for any p ∈ P , a curve
γp(t) ∈ P can be de�ned as γp(t) = pg(t), for which γp(0) = p holds.

Let the one-parameter subgroup be g(t) = exp(tA) for an element of the Lie-algebra of G,
A ∈ g. The tangent to this is the fundamental vector �eld, the push-forward of A through the
right-action and the exponentialisation, for f = ΦU(x, h) one may de�ne fetA = ΦU(x, he

tA)
which is independent of the local trivialisation, and

A∗f :=
d

dt
Rexp tAf

∣∣∣∣
t=0

=
d

dt
f exp tA

∣∣∣∣
t=0

.

Note that as to all elements A ∈ g corresponds a left-invariant vector �eld A on G, which
has the property Ag = Lg∗Ae, the fundamental vector �eld has a similar property. In a local
trivialisation, there is a section of the bundle

eU = ΦU(., e) ,

where e ∈ G is the unit element. Any point f ∈ P may be written as f = eU(π(f)))fU where
fU ∈ G. Using these

A∗f =
d

dt
fetA

∣∣∣∣
t=0

=
d

dt
eU(x)fUe

tA

∣∣∣∣
t=0

= (eU(x)·)∗AfU .

where x = π(f). This is the push-forward of AfU with the map eU(x)·, and

AfU = LfU∗Ae =: fUA .

Using the more abstract formulation of the principal G-bundle (without frames), where
eU(x) = ϕU(x, e) is a unit section of the principal bundle P , it is possible to coordinatise the
tangent of P by U ×G× g by assigning to x, g, A the vector

d

dt
eU(x)ge

tA

∣∣∣∣
t=0

=
d

dt
R̂etAR̂geU

∣∣∣∣
t=0

at eU(x)g = R̂g(eU(x)).

18.1a. The Maurer-Cartan form

The Maurer-Cartan form is de�ned using a basis ER ∈ g. These are extended into a basis of
left-invariant vector �elds on G as

eRg := Lg∗ER ∈ TgG .

6



The dual basis is denoted by σR,

σR(eS) = δRS , σR
g (eRg) = δRS .

The Maurer-Cartan g valued 1-form is de�ned as

Ω := ER ⊗ σR .

On the basis eR this takes the value

Ω(eR) = ES ⊗ σS(eR) = ESδ
S
R = ER .

Note that eRg = Lg∗ER, so
Ωg = (Lg∗)

−1 .

In the case of a matrix group, Lg acts by matrix multiplication, so L−1g∗ = g−1, and dg is the
unity matrix in TgG, so we may write

L−1g∗ = g−1dg .

Writing out dg is important when using a parametrisation, as g = g(α), so g∗dg = ∂kg(α)dα
k.

Usually, g∗ is not written out explicitly (see the example in sec. 18.1a in the book).
The book mentions the usual proof for matrix groups that Ω is a left-invariant 1-form. Note

that in the modern formulation, this is so by de�nition. As

Ω = ER ⊗ σR ,

here only the σR's are �elds, so a pull-back only acts on them, and they are left-invariant,

L∗hω = L∗h(ER ⊗ σR) = ER ⊗ L∗hσ
R = ER ⊗ σR = Ω .

18.1c. Connections in a principal bundle

In the book, connections have been de�ned using the covariant derivative of a frame,

∇UeU = eU ⊗ ωU ,

where the frame eU is a row-vector of vectors, and ωU a matrix of 1-forms.
To obtain a covariant derivative of a section in the principal bundle f , in eq. (18.12), the

covariant derivative of it along a curve is de�ned. Let x = x(t) de�ne a curve in M , and
f(t) = f(x(t)) the corresponding curve in the principal bundle. In terms of frames, f may be
written as f(x) = eU(x)gU(x), to which corresponds a curve in the group by

f(t) = eU(x(t))gU(x(t)) =: eU(x(t))g(t) .

We use this to obtain its covariant derivative, i.e., repeat eq. (18.12) without assuming that G
is a matrix group. Points in a general principal bundle are coordinatised in a local trivialisation
as

p(x, g) = R̂geU(x) ,
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where eu is a unit section, and R̂ the right-action on the bundle [see theorem (17.8)]. In this
case, the covariant derivative of the curve may be de�ned as follows. Let f(t) = R̂g(t)eU(x) be
a curve in the bundle. In order to de�ne

∇f

dt
= ∇x′(t)f = ∇Xf ,

where X = x′(t), one needs a one form taking its value in the tangent space of P . Let ω be a
1-form on M taking its value in g, the Lie algebra of G.

As f takes its value in the bundle P , and f = R̂geU , the tangent space of P at f(t) may

be written as R̂g∗TeU (x)P , and we may identify a subset of this by g as follows: to any vector

A ∈ g we associate d(eu(x)e
tA)/dt|t=0 and we push this forward to Tf(x)P by R̂g, which is the

value A∗f (x) of the fundamental vector �eld.
This way, we may associate to ω(X) ∈ g the vector [ω(x)]∗f in Tf(x)P .

Let us now put this machinery to use. To obtain ∇Xf , where f(x) = R̂g(x)eU(x) we proceed
as follows.

First, we want to consider the change of g(t) = gU(x(t)). The derivative of such a curve is
g′(t) ∈ TgG = Lg∗TeG, i.e., we may write that as g′(t) = Lg(t)∗Ω(g

′(t)) where Ω is the Maurer-
Cartan 1-form. We now consider the Lie algebra element Adg−1(ωx)(X) + Ωg(t)(g

′(t)) and the
value of the corresponding fundamental vector �eld at fU(x(t)),

∇Xf =
[(
AdgU (x)−1(ωgU (x))

)
(X) + ΩgU (x) (gUx∗X)

]∗
f(x)

,

where gUx∗X = dgU(x(t))/dt, and X = x′(t), or

∇f

dt
=
[(
Adg(t)−1(ωg(t))

)
(x′(t)) + Ωg(t) (g

′(t))
]∗
f(t)

.

To see that this is the generalisation of eq. (18.12), we shall see that in the matrix group case
A∗f = gUA, so we get

∇Xf = gU
[
g−1ω(X)g + g−1dg (X(g))

]
,

and taking the frame bundle as the principal bundle, we may replace gU before the bracket by
fU . I think the tensor product sign in eq. (18.12) is not necessary.

18.2a. Associated bundles

The construction of the associated bundle. Let π : P → M be a principal bundle, and its
transition functions be c, i.e., if on U ⊂ M and V ⊂ M two local trivialisations are given
(e.g., by unit sections, eU and ev, then a point P ⊃ π−1(U ∩ V ) = eUgU = eV gV ), then
cUV : U ∩ V → G such that eU = eV cUV , and therefore gV = cV UgU .

An associated bundle may be constructed as a quotient space. Let ρ : G → Gl(X) be a
representation of G on a vector space X. We take a chart of the principal bundle with local
trivialisations, to each patch U corresponding a local unit section eU . We want to have a bundle
π̃ : Pρsuch that

π̃−1(U) ∼= U ×X ,

and the transition functions are c̃UV = ρ(cUV ). What is then the total space?
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We take for a chart Uα, ∪αUα =M the following:

Pρ = ∪α(Uα ×X)/ ∼

where the equivalence relation ∼ is given by

U ×X ∋ (x, ψU) ∼ (y, ψV ) ∈ V ×X , i� ψV = ρ(cV U)ψV .

The next step is the association of a bundle to a vector bundle E → M through a repre-
sentation ρ of its structure group. I.e., for this bundle E, for any two patches U, V and point
x ∈ U ∩ V , the transition function cUV (x) ∈ G ⊆ GL(F ) where the vector space F is the �ber
of the bundle E.

This is constructed as follows: �rst, we note that the frame bundle P may be constructed
with �ber G, representing sections as f(x) = eUgU(x). Then choosing a representation ρ : G→
Gl(X) on a vector space X, the vector bundle associated to the principal frame bundle may
be constructed. This will be called the bundle associated to the vector bundle through the
representation ρ, i.e., Eρ := Pρ.

18.2b. Connections in associated bundles

To the use of the connection form in eq. (18.22). We have de�ned a connection form in a vector
bundle as a matrix of 1-forms where the covariant derivative of a frame is de�ned as

∇ej = eUk ⊗ ωk
U j , or ∇eU = eU ⊗ ωU .

Not the covariant derivative of a section f = eUfU was de�ned in order to obey the Leibniz rule
as

∇f = ∇(ef) = ∇(ekf
k) = (∇ek)f

k + ekdf
k = ek ⊗ (ωk

jf
j + dfk) = e⊗ (df + ωf) ,

where we have dropped the index U denoting the patch. We use the notation

∇f = eU ⊗∇UfU .

Eq. (18.22) is this, with the notation yU for what used to be fU .

18.3a. r-form sections of E

An r form section is de�ned as an anti-symmetric mapping of r vector �elds to a section of a
bundle E, linearly and locally, i.e., an element of

Γ(E)⊗
r∧
M .

If eU is a frame (k independent local sections) of the bundle E, then an r-form can be written
in the form

ϕU = eU ⊗ ϕU = eR ⊗ ϕR .

The exterior covariant derivative is de�ned as

∇ϕU = eU ⊗ (dϕU + ωU ∧ ϕU) = eR ⊗ (dϕR + ωR
S ∧ ϕS) .
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18.3b. Curvature and the Ad bundle

The introduction before theorem (18.40) says, a bit more explicitly, that if E is a vector bundle
with transition functions cV U , then the curvature forms

θU = dωU +
1

2
[ωU , ωU ]

are not the local parametrisations of a g Lie-algebra-valued 2-forms with the same structure
group representation as E, i.e., not elements of E ⊗

∧2M , but rather of EAd ⊗
∧2M .

19.3a. The Lorentz group

When considering how SO(3) is a deformation retract of L0 the group of proper (orientation-
preserving, {B : detB = 1}) isochronous (time-direction preserving B : B0

0 ≥ 0{) Lorentz
transformations, there are some concepts useful in physics implicitly at play.

Let
H := x ∈M4 : xixi = x20 − x · x = −1

be the hyperboloid of possible velocities of on observer.
For any u ∈ H, there is a standard Lorentz transformation, usually denoted Λu←u0 , that

takes the vector u0 = (1,0)T , into u. There are di�erent ways to choose the standard boost.
The Lorentz tranformatios leaving a given u ∈ H �xed,

Lu := {B ∈ L0 : Bu = u} ,

make up the little group of the given four-velocity. In the case of the standard 4-velocity
(1,0)T ,

Lu0 =

(
1
0 SO(3)

)
,

and for any other u ∈ H,
Lu = Λu←u0Lu0Λ

−1
u←u0

.

This is often expressed so, that the little group corresponding to a massive momentum is SO(3),
as when choosinf a mass m, mu = p is a momentum of a particle with mass m, pipi = −m2.
It is also possible to consider the little group of a lightlike vector, which turns out to be the
two-dimensional Euclidean group, ISO(2).

This yields the homogeneous space structure

H ∼=
L0

SO(3)
.

20.4b. Averaging over a compact Lie group

In the proof of thm. (20.30), the aim is to prove that the left-invariant Haar measure (in this
case, volume form), constructed from a left-invariant basis of 1-form �elds,

ω = σ1 ∧ · · · ∧ σn ,

10



is bi-invariant on a compact Lie group. Here e is a frame of left-invariant vector �elds on G,
and σ is its dual.

The proof is indirect, assuming that it is not so, and then constructing a continuous function
on G that diverges at some point, which contradicts compactness.

The continuous function on G is

F : G→ R , g 7→ F (g) = ω(Rg−1∗Lg∗e) = ω(geg−1) ,

which is well de�ned: the scalar �eld on the right has a constant value, as Lg∗e = e, i.e., it is
still a left-invariant �eld, and so is ω.

To show that this function diverges, it is evaluated along a sequence g, g2, . . . . Assuming
that F (g) is not constant (i.e., that ω is not right-invarian), we may choose g such that F (g) =
c ̸= F (e). Furthermore, we can assume that c > 1, otherwise replace g with g−1.

As F (g) = c = cω(e), it follows that F (g2) = c2, F (gn) = cn and so F (gn) = cn → ∞ as
n→ ∞.

20.5a. The exterior covariant divergence ∇∗

The book gives a coordinate expression. Here, I would like to give an expression relating it to
d∗.

First, note that d∗ is de�end as the Hilbert space adjoint of d,

(dα, β) = (α, d∗β) .

This is so for ordinary forms.
Now for forms in the adjoint bundle, one needs to de�ne the scalar product �rs, which is

generalised as

(θ, ϕ) = −
∫
M

Tr(θ ∧ ∗ϕ) ,

which is analogous to the formula for ordinary forms, except that here, the exterior product
takes its value in the tensor product of the Ad bundle with itself. As any bilinear function can
be extended to the tensor product, so can the −Tr.

Let us now consider ∇θ, which is

∇ψ = dψ +Ad∗(ω)ψ = dψ + [ω, ψ] .

Note, that we do know the adjoint of d, its d∗, so

(∇ψ, ϕ) = (dψ + [ω, ψ], ϕ) = (dψ, ϕ) + ([ω, ψ], ϕ) = (ψ, d∗ϕ) + ([ω, ψ], ϕ) .

Let us consider the second term,

([ω, ψ], ϕ) = −
∫
M

Tr([ω, ψ] ∧ ∗ϕ) =
∫
M

Tr(ψ[ω, ϕ]) = −(ψ, [ω, ϕ]) ,

where we are using eq. (20.35) in the form Tr([X, Y ], Z) = −Tr(Y, [X,Z]), so we arrive at

∇∗ϕ = d∗ϕ− [ω, ϕ] .
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21.1a. Bi-invariant p-forms

The end of the proof,
αp = α I−→

σI = α I−→
τ I ,

where the σi are left- and the τ i are right-invariant forms, which agree at the identity, σi
e = τ ie.

Accoding to sec. 15.4c,

dσi = −1

2
Ci

jkσ
j ∧ σk , dτ i =

1

2
Ci

jkτ
i ∧ τ k ,

where Ci
jk are the structure constants of the group. On one hand,

dα = −1

2
αi1<···<ip

(
Ci1

jkσ
j ∧ σk ∧ σi2 ∧ · · · ∧ σip − Ci2

jkσ
i1 ∧ σj ∧ σk ∧ σi3 ∧ · · · ∧ σip + . . .

)
,

and on the other,

dα = +
1

2
αi1<···<ip

(
Ci1

jkτ
j ∧ τ k ∧ τ i2 ∧ · · · ∧ τ ip − Ci2

jkτ
i1 ∧ τ j ∧ τ k ∧ τ i3 ∧ · · · ∧ τ ip + . . .

)
.

Note, that the two formulae only di�er in the sign, and the replacement σ 7→ τ , so evaluating
at g = e,

dσe = −dσe , dσe = 0 ,

and as σ is invariant, so is dσ, so dσ = 0.

A.c. Symmetry of Cauchy's stress tensor in R3

The logic here is as follows: the angular momentum is de�ned �rst (5 eqs. before A.11), as

−H =
1

2

∫
B(t)

r ∧ v ⊗m,

i.e., −r ∧ v ⊗m is de�ned as the angular momentum density. Its derivative is then obtained
(i) directly, by inserting Cauchy's equations (A.10) into dH/dt, and (ii) with the assumption,
that it agrees with all torques acting on the body. The condition that the two agree is∫

B(t)

dr ∧ t = 0 ,

which is equivalent to the symmetry of Cauchy's stress tensor, or

dxr ∧ ts = dxs ∧ tr .

E.a. The topology of conjugacy orbits

Let us consider the mapping F . It is de�ned as the mapping of the cosets of G/Cσ to Mσ ⊂ G
as follows,

F : G/Cσ →Mσ ⊂ G, gCσ 7→ gσg−1.
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First, let us show that this map is well-de�ned, i.e., if g and g′ are in the same coset, g′ = gh,
h ∈ Cσ, then g

′σg′−1 = ghσ(gh)−1 = ghσh−1g−1 = gσhh−1g−1 = ghg−1.
Secondly, to show that F is an embedding of the manifold G/Cσ in Mσ, it is necessary to

show that F∗ is 1:1. This is �rst fone at σCσ ∈ G/Cσ,

F∗σCσ : TσCσ(G/Cσ) → TσMσ ⊂ TσG ,

using the fact that σCσ = Cσ and that curves in G/Cσ can be parametrised as g(t)Cσ and at
σCσ, these curves can be taken to be of the form eY tCσ, which are mapped into eY tσe−Y t.

The velocity vector of eY tσe−Y t is RσY − LσY , and if this vanishes, then Lσ−1RσY =
AdσY = Y , as a consequence, eY t and σ commute, the curve is on Cσ, i.e., it is a constant in
G/Cσ.

As Adg : G → G is a di�eomorphism, it is clear that F∗ is 1:1 everywhere, so F is a local
embedding everywhere. It can be shown that Mσ is globally an embedded submanifold.

Our calculation also shows that the mapping F∗Cσ mapping Y 7→ RσY − LσY is 1 : 1 and
onto.
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