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These are solutions to problems in Ref. [1].

1 Manifolds, tensors, and exterior forms

1 Manifolds and vector �elds

Problem 1.1(1) The locus x2 + y2 − z2 = c in R3 for c <,=, > 0:

� For c < 0: Can reparametrise as z = ±
√
x2 + y2 − c. A smooth manifold of two compo-

nents: a two-sheeted hyperboloid.

� For x = 0: this is a cone, z =
√
x2 + y2. Union of a manifold and {0}. If we omit the

origin, we obtain a (non-connected) manifold.

� For c > 0: x2 + y2 = c + z2, can be parametrised as (x, y) =
√
c+ z2(cos θ, sin θ), a

manifold: a one-sheeted hyperboloid.

Problem 1.1(2) SO(n) is a submanifold of R3×3, and a zero of one function R→ RTR− 1,
into Symn(n+1)/2, the set of symmetric n × n matrices, therefore a submanifold of dimension
n2 − n(n + 1)/2 = n(n − 1)/2. As (detR)2 = detRTR = 1, the determinant condition only
selects one component.

Problem 1.1(3) Yes, as det(R+δr) = detR(1+R−1δr) = (detR) Tr δr, the derivative of the
determinant is D det[R] = (detR) Tr, which, restricted to SL(n) is the trace, a linear mapping
of rank 1, therefore GL(n) is an n2 − 1 dimensional submanifold of Rn×n.

Problem 1.1(4) The x component of the cross product is ∂yF∂zG− ∂zF∂yG. If this is non-
vanishing, we can solve for dy/dx and dz/dx for a curve x, y(x), z(x) locally from the equations:
their derivatives are ∂xF + ∂yFdy/dx+ ∂zFdz/dx = 0 and ∂xG+ ∂yGdy/dx+ ∂zGdz/dx = 0,
expressed with the partial derivatives ∂xF and ∂xG.

Problem 1.2(1) Let Ux be those lines that do not lie in the yz plane. These can be param-
eterised as (y/x, z/x). Similarly, de�ne Uy, Uz. A line in Ux is then coordinatised as x1 = y/x,
x2 = z/x, [λ, λx1, λx2]. The same line has coordinates y1 = x/y = 1/x1, y2 = z/y = x2/x1.
Di�erentiable on the intersection. Similarly for the other transition functions.
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Problem 1.2(2) Let Rn−1 ∋ (ξ1, . . . , ξn), and a line in it is [λξ1, . . . , λξ2] for λ ∈ R. Let
Ui = {ξi ̸= 0}. Coordinates: ξj/ξi, i ̸= j. Transition function for two as above, e.g., let the
coordinates be x1, . . . , xn−1 for Ui and y

1, . . . , yn−1 for Uj. Then a line in Cn is given as ξk = λxk

(k < i), ξl = λxk−1 (k ≥ i) and ξi = λ, and then yℓ = xℓ/xj for ℓ < i, j, di�erentiable. The
formula is similar for other values for ℓ, indices are shifted.

Problem 1.2(3) Same. CP 1 is the Riemann sphere.

Problem 1.3(1) It is coordinate system independent. If xi are coorinates, so are yi = αxi for
some 0 ̸= α ∈ R, yielding in ∥X∥2y = ∥X∥2x/α2, proving that the expression is not coordinate
independent.

Problem 1.3(2) The two equatiorial circles, where the Jacobian becomes rank 1.

Problem 1.3(3) If f∗ is not onto to R, it must vanish (as it is a number). On the other
hand, f∗ is nothing but the restriction of the gradient to the tangent manifold, i.e., at a point
x ∈M ,

f∗x : TxM → R, f∗xv = df(x+ vt)/dt|t=0 =
∑
i

vi∂if(x) ,

and
∂if = ∂i

∑
i

(xi)2 = 2xi ,

i.e., for x to be a critical point, the position vector must be orthogonal to all v in the tangent
space (which is the de�nition of being orthogonal to the submanifold).

Problem 1.4(1) the solution to the di�erential equation is obtained as dx/x2 = dt, i.e.,
−1/x = t− t0, or x(t) = −1/(t− t0), and solvind the initial condition, x(0) = 1/t0 = p yields
Φp(t) = −1/(t− 1/p), which is de�ned for −∞ < t < 1/p, or, in the case of 1/2 < x < 3/2, the
largest ϵ is 2/3.

Problem 1.4(2) The transition function is w = 1/z, and therefore ẇ = −1/z2ż = −w2. The
integral curves are w(t) = 1/(t− 1/w0) = w0/(w0t− 1). The point w0 = 0 is a singular point,
Φt(w0 = 0) = 0.

2 Tensors and exterior forms

Problem 2.1(1)
∑

j a
V
i v

i
V =

∑
ijk(∂xiV /∂x

j
U)a

U
j (∂x

k
U/∂x

i
V )v

k
U =

∑
j a

U
j v

j
U , the Jacobian

matrix drops out. In the case of the two vectors, v and w, the Jacobian components would
remain in the sum (quadratically), the expression would not be coordinate invariant (unless the
two coordinate systems are related to each other by an orthogonal matrix).

Problem 2.1(2) Using the chain rule, ∂r = sinϑ cosφ∂x+sinϑ sinφ∂y+cosϑ∂z, etc., yielding
grr = 1, gϑϑ = r2 and gφφ = r2 sin2 ϑ, and all other components vanish.

The gradient vector components are calculated by raising the indices of the di�erential
by using the inverse metric, i.e., (∇f)r = ∂f/∂r, (∇f)ϑ = (1/r2)∂f/∂ϑ, and (∇f)φ =
(1/r2/ sin2 ϑ)∂f/∂φ2.
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The primed unit vectors are e′j = ∂j/
√
gjj. In the usual formalism for orthonormal curvi-

linear coordinates, we denote h2i = gii, and componets of th gradient are (1/hi)(∂f/∂x
i).

Problem 2.3(1) For the push-forward of any vector v =
∑

i v
i∂/∂xi, the following holds,

F∗v =
∑

i,j v
i(∂yj/∂xi)(∂/∂yj). Similarly, for w =

∑
j w

j(∂/∂yj), G∗w =
∑

j,k w
j(∂zk/∂yj) ·

(∂/∂zk). Applying this to w = F∗v and comparing that to applying G ◦ F , and calculating its
derivative using the chain rule yields the same.

For the second part of the excercise: dxi is de�ned by the relation dxi(∂/∂xj) = δij. Now
let us consider F ∗dyj. (F ∗dyj)(∂/∂xi) = dyjF∗(∂/∂x

i) = dyj
∑

(∂yk/∂xi)(∂/∂yk) = ∂yk/∂xi.
Proceed similarly to G∗dyj, and then compare with chain rule.

Problem 2.3(2) Let us �rst consider (i). Upon changing coordinates on M from q to q′,
there is a change of coordinates on TM from q, q̇ to q̇, q̇′. Using the usual formula for the
transformation of a vector in TN , there N = TM , we get

∂

∂qi
=
∑
j

(
∂q′j

∂qi
∂

∂q′j
+
∂q̇′j

∂qi
∂

∂q̇′j

)
.

To obtain the Jacobian components in the second term in the brackets, let us remember the
transformation formula of vectors, applied to a vector

∑
i q̇

i∂/∂qi (i.e., a point in N = TM):

q̇′j =
∑
i

∂q′j

∂qi
q̇i ,

and calculating the second derivative yields

∂q̇′j

∂qi
=
∑
k

∂2q′j

∂qi∂qk
q̇k .

As for (ii), in another coordinate system∑
i

q̇i
∂

∂qi
=
∑
i,j

q̇i
(
∂q′j

∂qi
∂

∂q′j
+
∂q̇′j

∂qi
∂

∂q̇′j

)
=
∑
ijk

∂qi

∂q′k
q̇k
(
∂q′j

∂qi
∂

∂q′j
+
∂q̇′j

∂qi
∂

∂q̇′j

)
,

and from (i), we see, that this is not well-de�ned globally: the �rst term in the brackets
together with the Jacobian would yield the same expression in the primed coodinates as the
one we started with in the unprimed ones, and the second term is additional and nonzero.

Similarly, for (iii),

∑
i

q̇i
∂

∂q̇i
=
∑
ijk

∂qi

∂q′k
q̇k

(∑
l

∂2q′l

∂qj∂ql
q̇l
∂

∂qj
+
∂q′j

∂qi
∂

∂q̇′j

)
,

and in this case, the Jacobian components are cancelled from the second term and the pre-factor,
yielding the same expression as the one we started with (but now in primed coordinates), and
the �rst one is extra (in addition, we could express q̇l in the new coordinates).

Problem 2.4(1) Compute: α⊗ β(v,w) = α(v)β(w) = α(vk∂k)β(w
ℓ∂ℓ) = vkwℓα(∂k)β(∂ℓ) =

vkwℓaibjdx
i(∂k)dx

j(∂ℓ) = aibkdx
i(vk∂k)x

j(wℓ∂ℓ) = aibjdx
i⊗xj(vk∂k, wℓ∂ℓ) = aibjdx

i⊗xj(v,w).
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Problem 2.4(2) In a new (primed) basis, the matrix of the transformation is A = JAJ−1

where J i
j = ∂jx

′i is the Jacobian. Using the cyclic property of the trace, J is cancelled. On
the other hand, for a covariant tensor, J−1J−1T remains in the trace.

Problem 2.4(3) (i) transform to a new coordinate system, denoted by primes on the co-
ordinates, using the known transformation rules of the covariant tensor and the contravariant
vector,

v′k =
∂xj

∂x′k
∂xi

x′ℓ
gji
∂x′ℓ

∂xm
vm =

∂xj

∂x′k
gjiv

i ,

which is the transformation rule for a covector.
(ii) On the other hand,

∂′j
∂x′i

∂xk
vk = ∂′jv

′i + vk
∂xℓ

∂x′j
∂2x′i

∂xℓ∂xk
,

which is only agrees with ∂′jv
′i if the two coordinate systems are related by a linear transfor-

mation.
(iii) The third quantity does not even have the indices aligned right.

Problem 2.4(4) (i) The series expandion to quadratic order is here 2T = gij(0)q̇
iq̇j (any

term in the expansion of gij would be multiplied by a q̇, yielding a term higher than quadratic),
and V = V (0)+∂V (0)/∂qiqi+1/2∂2V/∂qi∂qjqiqj, and the fact that q = q̇ = 0 is an equilibrium
yields ∂V (0)/∂qi = 0, yielding the desired result.

(ii) Only substitution is necessary.
(iii) The Lagrangian of the double pendulum is L = T − V with T = 1/2m1ℓ

2
1(θ̇)

2 +
1/2m2[ℓ

2
1(θ̇)

2 + ℓ22(ϕ̇)
2 + 2ℓ1ℓ2 cos(θ − ϕ)θ̇ϕ̇] and V = −m1gℓ1 cos θ − m2g(ℓ1 cos θ + ℓ2 cosϕ).

Substitution and derivation.

Problem 2.5(1) Evaluate both sides on eJ . As σ
I(eJ) = δIJ , we have

σ(eJ) =
∑
I−→

α(eI)δ
I
J .

Due to the anti-symmetry of α, this is the expected result. Only those terms contribute to the
sum, where J is a permutation of I−→, which is 0 if there are repeated indices in J , and exactly

one term otherwise (when I−→ is the same as J sorted), and that term is the correct value.

Problem 2.5(2) According to Eq. (2.43),

(α ∧ β)ijk =
∑
K−→

∑
J−→

= δJKI aJbK =
∑
ℓ

∑
m<n

δℓmn
ijk aℓbmn .

As a result, ℓ,m, n must be a permutation of i, j, k. These are with positive parity, i, j, k, j, k, i,
k, i, j, and with negative, k, j, i, j, i, k, and i, k, j. In the latter two, the sign can be changed
by exchanging the indices of b, yielding i, j, k, j, k, i, k, i, j and k, i, j, j, k, i, i, j, k. We now
take into account that summation is only over m < n, i.e., when the indices of b are also in
ascending order. As a result, only one of i, j, k and i, k, j; j, k, i and j, i, k; and k, i, j and k, j, i
are in the original sum.
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Problem 2.5(3) As in the previous solution,

(α ∧ β)123 = a1b23 + a2b31 + a3b12 = a1b1 + a2b2 + a3b3 = α · β ,

denoting the components of β as b1 = b23, b2 = b31, b3 = b12.
Similarly, as (α ∧ β)12 = a1b2 − a2b1, etc., we get α ∧ β = (α× β) · dS

α ∧ β ∧ ρ = (α× β) · ρ .

Problem 2.6(1) Any 3-form can be written as β =
∑

i<j<k bijkℓdx
i ∧ · · · ∧dxk. For any such

i, j, k, they have to assume three di�erent values, and thus a forth one is missing, which can be
assigned to the component,

β = b1dx
2 ∧ dx3 ∧ dx4 − b2dx1 ∧ dx3 ∧ dx4 + b3dx

1 ∧ dx2 ∧ dx4 − b4dx1 ∧ dx2 ∧ dx3 .

Now using in all terms d(fdxi ∧ · · · ∧ dxk) = df ∧ dxi ∧ · · · ∧ dxk, the fact that df = ∂ifdx
i,

and that if in one wedge product any term occurs twice, the product is zero, yields

dβ = ∂1b1dx
1 ∧ dx2 ∧ dx2 ∧ dx3 ∧ dx4 − ∂2b2dx2 ∧ dx1 ∧ dx3 ∧ dx4

+ ∂3b3dx
3 ∧ dx1 ∧ dx2 ∧ dx4 − ∂4b4dx4 ∧ dx1 ∧ dx2 ∧ dx3

=

(∑
i

∂ibi

)
dx1 ∧ dx2 ∧ dx2 ∧ dx3 ∧ dx4 .

Note, that in each summand, it is not possible to get rid of the signs by rearrangeing the terms
by moving the indices into ascending order, as that would be an even permutation.

We conjecture, that the expression for dimension n is

β =
n∑

r=1

br(−1)σrdxr+1 ∧ · · · ∧ dxn ∧ dx1 ∧ · · · ∧ dxr−1 ,

where σ = 0 for odd and σ = 1 for even n.

Problem 2.7(1) We want to prove F ∗(α∧β) = (F ∗α)∧ (F ∗β). To do this, we shall evaluate
both on a tuple of vectors, using (2.43),

(F ∗(α ∧ β)) (vI) = (α ∧ β)(F∗vI) =
∑
K−→, J−→

δJKL α(F∗vJ)β(F∗vK) =
∑
K−→, J−→

δJKL (F ∗α)(vJ)(F
∗β)(vK)

= ((F ∗α) ∧ (F ∗β)) (vI) .

Problem 2.7(2) β = b · dS = b1dy ∧ dz + . . . , so its pull-back in the u, v coordinates is

i∗β = b1i
∗(dy ∧ dz) + . . .

where b1 = b1(x(u, v), y(u, v), z(u, v)), etc. We need now the pull-back of dy, etc., i∗dy =
d(y ◦ i) = (∂y/∂u)du+ (∂y/∂v)dv (note that y ◦ u = y(u, v)), yielding

i∗β = b1 ((∂y/∂u)(∂z/∂v)− (∂y/∂v)(∂z/∂u)) du ∧ dv + . . .

and it is easy to recognise that the coe�cient of b1 in this �rst term is the �rst (x) component of
n = xu × xv times du ∧ dv. The terms not written out yield b2 times the second, and b3 times
the third components (i.e., the remaining terms of the dot product), all multiplied by du∧ dv.
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Problem 2.8(1) We follow the reasoning used for RP 2 in the text. For any dimension n,
RP n is the n-sphere in Rn+1 with the antipodal points identi�ed.

For a basis e1, e2, . . . , en in TpRP n to be positively oriented, N, e1, e2, . . . , en must be posi-
tively oriented in Rn+1. Let us consider this at the north pole.

Transporting this basis along a great circle starting in the direction of e1, we obtain a basis
f1 = −e1, f2 = e2, . . . , fn = en at the south pole.

Upon identi�cation, the great circle connecting the north and the south poles becomes a
closed curve, and the basis represented by f1, . . . , fn at the south pole the same as the one
represented by −f1 = e1,−f2 = −e2, . . . ,−fn = −en at the north pole, which is of the opposite
orientation as e1, . . . , en if n is even. Thus, for n even, there exists a closed curve, along which
a basis is transported reversing the orientation, consequently, RP n is not orientable for n even.

Problem 2.8(2) There is something wrong with this exercise. A normal is not de�ned
without a metric, so we shall assume that there is a metric on W .

Anyway, let us try to prove that if M is orientable, there is a non-zero transversal vector
�eld (i.e., it is two-sided). As M is oriented, it is possible to choose a basis v1, . . . ,vn in its
tangent space with positive orientation, smoothly in each coordinate patch. At each point, one
can extend this to a basis in the tangent space of W , so that there v1, . . . ,vn,w is a basis that
is positively oriented, and w is a unit normal to M .

Problem 2.8(3) In Problem 2.1(2) we have computed the metric grr = 1, gϑϑ = r2 and
gφφ = r2 sin2 ϑ. It was shown in the text that vol = o

√
gdr ∧ dϑ ∧ dφ = or2 sinϑdr ∧ dϑ ∧ dφ,

where o is the orientation, usually assumed to be positive for x, y, z and thus for r, ϑ, φ.

Problem 2.10(1) Verify the transformation law! In a new coodinate system,

T
i1,...,ip
j1,...,jq

′ =
∂x′i1

∂xk1
· · · x

′ip

∂xkp
∂xℓ1

∂x′j1
· · · ∂x

ℓq

∂x′jq
T

k1...kp
ℓ1...ℓp

,

and using
∂x′i

∂xk
∂xℓ

∂x′i
= δℓj ,

upon contaction, the transformation rule of the components of a tensor of the type (p−1, q−1)
are obtained.

Problem 2.10(2) To calculate the components of ivα, let us remember that

α =
∑

i1<···<ip

αi1...ipdx
i1 ∧ · · · ∧ dxip ,

and
v = vi∂i ,

and dxi(∂j) = δij, yielding

ivα =
∑
j

∑
i1<···ip

vjαi1...ipi∂jdx
i1 ∧ · · · ∧ dxip .
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On the other hand, by evaluating on the multi-vector ∂ J−→
, it is shown easily, that

i∂jdx
i1 ∧ dxi2 ∧ · · · ∧ dxip = δi1j dx

i2 ∧ · · · ∧ dxip ,

yielding

ivα =
∑

i2<···<ip

vjαji2<···ipdx
i2 ∧ · · · ∧ dxip .

The other forms of the theorem are simply shown by reading o� components, and changing
between index and multi-index formalism.

Problem 2.10(3) df = ∂ifdx
i. For the divergence, we need the corresponding vector

(gradf) = gij∂jf∂i, where we have grr = 1, gϑϑ = 1/r2, and gφφ = 1/(r2 sin2 ϑ), i.e., the
components are

∂rf ,
1

r2
∂ϑf ,

1

r2 sin2 ϑ
∂φf ,

with this, the components of igradfvol is
√
ggij∂jf

r2 sinϑ∂rf , r
2 sinϑ

1

r2
∂ϑf , r

2 sinϑ
1

r2 sin2 ϑ
∂φf = ∂rf, sinϑ∂ϑf ,

1

sinϑ
∂φf ,

and, as
√
g = r2 sinϑ, we get, as in Eq. (2.89), taking into account that the metric is diagonal

∇2f =
1

r2
∂r(r

2∂rf) +
1

r2 sinϑ
∂ϑ(sinϑ∂ϑf) +

1

r2 sin2 θ
∂2φf .

Problem 2.10(4) (i) According to the dictionary 2.10, the form corresponding to gradf is
df , so the same in form language is d(fg) = (df)g + fdg, which is just the property of d being
a derivation.

(ii) Again, f simply multiplies iBvol, so the Leibniz rule can be used for the exterior deriva-
tive of fiBvol, i.e.,

d(fiBvol) = df ∧ iBvol + fdiBvol ,

and the �rst term is a 3-form ∂ifdx
i∧√g(B1dx2∧dx3+b2dx3∧dx2+B3dx1∧dx2) = ∂ifB

ivol =
⟨gradf,B⟩, and the other term is just fdivBvol.

(iii) Here, the Leibniz rule is applied to fα, where α = ⟨A, ·⟩ . Using d(fα) = df ∧α+ fdα
and remembering that the result is icurlAvol, the desired result is obtained of one shows df∧α =
igradf×Avol. This is easily done in component notation.

(iv) Denoting the lowered-index version of A and B with α and β, respectively, we get
α ∧ β = iA×Bvol. On the other hand iC×Dvol = −iCiDvol. With these, we shall use the
identity iv(ξ ∧ ζ) = (ivξ) ∧ ζ + (−1)rankξζ ∧ ivξ rule,

−α ∧ (β ∧ iCiDvol) = −α ∧ [(iCβ) ∧ iDvol− iC(β ∧ iDvol)] = −α ∧ [(BC)iDvol− (BD)iCvol]

= [−(BC)(AD) + (BD)(AC)]vol .

In the last step we used that ξ ∧ ivvol = (xv)vol. This results in

⟨A×B,C×D⟩ = (AC)(BD)− (AD)(BC) .
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Problem 2.10(5) We know that it is −iviBvol, so we use the expression of the volume form,
vol =

√
g
∑

i<j<k ϵijkdx
i∧dxj∧dxk, and v = vℓ∂ℓ,B = Bm∂m, so iBvol =

√
g
∑

m

∑
i,j<k B

mϵijk·
dxi(∂m)dx

j ∧ dxk =
∑

i,j<k

√
gBiϵijkdx

j ∧ dxk. Continuing, v =
∑

m v
m∂m, so

iviBvol =
√
g
∑
m

vm
∑
i,j,k

Bjϵijkdx
j(∂m)dx

k =
√
g
∑
i,j,k

vjBiϵijkdx
k .

yielding

iv×Bvol =
∑
i,j,k

√
gviBjϵijkdx

k .

3 Integration of di�erential forms

Problem 3.1(1) F ∗α = 0 if for an arbitrary basis at u0, (F
∗α)(v1, . . . ,vp) = 0. If the rank

of F is lower than p at u0, that means that the vectors F∗v1, . . . , F∗(v)n are linearly dependent.
Firstly,

(F ∗α)(v1, . . . ,vp) = α(F∗v1, . . . ,vp) ,

Secondly, if the vectors are linearly dependent, then there is a 1 ≤ k ≤ p, that F∗vk =∑
i ̸=k ciF∗vi, so

α(F∗v1, . . . ,vp) = α

(
F∗v1, . . . ,

∑
i ̸=k

ciF∗vi, . . . ,vp

)
=
∑
i ̸=k

ciα(F∗v1, . . . ,vi, . . . ,vp) = 0 ,

as in the last term, F∗vi appears twice among the variables of α, and α is fully anti-symmetric.

Problem 3.1(2) In Eq. (3.13), the integration of a vector over a surface was so de�ned, that
its dot product with NiNvol(∂x/∂u

1, ∂x/∂u2) is integrated over du1du2, i.e.,

n = NiNvol

(
∂x

∂u1
,
∂x

∂u2

)
m

where N is such a unit vector that N, ∂x/∂u1, ∂x/∂u2 form a right-handed system. The scalar
product with a vector, according to the dictionary, is equivalent to the appliction of a one-form,
and that one form can be read o� in this case, is

⟨n, ·⟩ = vol

(
∂x

∂u1
,
∂x

∂u2
, ·
)
,

which, is the 1-form corresponding to a cross product, with the components

ϵijk
∂xj

∂u1
∂xk

∂u2
,

which yields the formula for the components of n. Here we have used the fact that the coordi-
nates x are Cartesian. The rest is just substitution.

In the case x1 = u1, x2 = u2, x3 = f(u1, u2), we get

n = − ∂f

∂u1
∂1 −

∂f

∂u2
∂2 + ∂3 ,
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and ∥n∥2 = 1 + (f ′
x1)2 + (f ′

x2)2.
In the case when the surface is given as F (x, y, z) = 0, and it is assumed that this can

be solved for z, all one needs to do is to assume that a function z = f(x, y) exist, for which
F (x, y, f(x, y)) = 0, and use that in the previous case. Deriving this relation by x and y, yields
∂f/∂x = −(∂F/∂x)/(∂F/∂z) and ∂f/∂y = −(∂F/∂y)/(∂F/∂z), respectively. Note, that the
normal is parallel to gradF ,

n =
1

∂F/∂z
gradF .

Problem 3.1(3) (i) By the de�nition, Ak ·B = vol(Ak,A1, . . . ,An−1). The volume form is
totally anti-symmetric, and two of its variables are equal, therefore, the r.h.s. vanishes.

(ii) The volume element is de�ned in such a way that an n − 1-form integrated on the
parameterized hypersurface yields the same result, as the corresponding vector multiplied the
normal vector times the volume element. The steps of (3.13) may be repeated with more ui's,
arriving at the expression for dSn−1, yielding

⟨n, ·⟩ = vol(∂x/∂u1, . . . , ∂x/∂un−1, ·) ,

which is the co-vector corresponding to n in the standard metric of Rn.
(iii) i(v) always inserts the vector to the �rst variable of a form.
(iv) Insertion is always contaction with the �rst index.
(v) Follow the steps of the previous derivation. All steps remain valid until the volume form

is used, up to

⟨n, ·⟩j =
√
gϵi1...in−1j

∂xi1

∂u1
· · · ∂x

in−1

∂un−1
=
√
gDj ,

and this is a covector, so its norm is calulated using the metric, gij.

Problem 3.3(1) In 3d, for p=2, what we have is a 2 dimensional surface A, and∫
A

dω =

∫
∂A

ω

where ω is a 1-form, written in 3d as
ω = ωidx

i ,

and then dω = (∂1ω2 − ∂2ω1)dx
1 ∧ dx2 + · · · = i∇×vvol, where ω = ⟨v, ·⟩, and the integral of

the one-form itself over the boundary is∫
∂A

ω =

∫
ω

(
dx

dt

)
dt =

∫
∂A

v · ds ,

yielding the more usual form ∫
A

∇× v =

∫
∂A

v · ds ,

which is the usual form of Stokes' theorem.
The p = 3 case is the case when ω is the 2-form

ω = ω1dx
2 ∧ dx3 + ω2dx

3 ∧ dx1 + ω3dx
1 ∧ dx2 ,
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and its exterior derivative is
dω =

∑
i

∂iωi = (∇v)vol

where ivvol = ω, and the left hand side is the integral of the exterior derivative over a volume,∫
V

dω =

∫
V

∇ · vvol ,

and the right hand side is the surface of a 2-form, which may be written as∫
∂V

ivvol =

∫
∂V

vol

(
v,

∂x

∂u1
,
∂x

∂u2

)
du1du2 =

∫
∂A

v · dS ,

yielding the usual form of Gauss' theorem,∫
V

(∇ · v) =
∫
∂V

v · dS .

Problem 3.3(2) The case of p = 2 corresponds to the integral of a one-form over a closed
line, ∫

∂V

ω =

∫
∂V

vds

where the vector v corresponds to the one-form via the metric, and the vector measure ds
corresponds, similarly, to (∂x/∂u)du.

The other side of the equation is the integral of a 2-form dω = (∂iωj−∂jωi)dx
i∧dxj, which

may be written as vol(curlv, ·, ·), integrated over a surface, so the integral may be written as∫
V

curlvdΣ ,

where dΣ = vol(·, ·, ∂x/∂u1, ∂x/∂u2)du1du2 the indices of which may be raised using the metric
to get dΣ. In this case, the curl may be de�ned as a 2-index contravariant tensor which arises
by raising the indices of (1/2)iantisymm∇⊗vvol. In coordinate form,∫

V

1

2
ϵijkℓ(∂

kvℓ − ∂ℓvk)dσij , dσij = ϵijkℓ
∂xk

∂u1
∂xℓ

∂u2
du1du2 .

I think that in this case the �vectorial� notation becomes quite cumbersome, showcasing the
advantages of using forms.

The case of p = 3 involves the integral of a 3-form dω over a 3-volume, and ω over its
2-dimensional boundary. A 2-form may be written as ω = iAvol, where A is an anti-symmetric
two index (contravariant) tensor. Its external derivative is then

dω = diAvol = 2i∇Avol ,

where (∇A)j = ∂iA
ij. The integral thereof can be considered as the scalar product of ∇A and

a vector which corresponds to the covector vol(·, ∂x/∂u1, ∂x/∂u2, ∂x/∂u3) which is the volume
element of the hypersurface, dS = NdS where N is its normal vector.

The right-hand side can be considered as the integral of iAvol over ∂V , which may equally
be considered, using a parametrisation, as the integral of the twice-contracted product of A
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and vol(·, ·, ∂x/∂u1, ∂x/∂u2)du1du2 =: dΣ where dΣ is the surface-element two-form, or, with
its indices raised by the metric ∫

∂V

ω =

∫
∂V

A · dΣ ,

yielding ∫
V

2(∇ ·A) · dV =

∫
∂V

A · dΣ .

The case of p = 4, the integral of a 3-form over a hypersurface, or its exterior derivative
over the 4-volume bounded by a 3-surface yields∫

V

(∇ · v)dV =

∫
∂V

v · dS

where dV is the usual integration using the volume form, and dS is the hypersurface element
NdS, where theN is the unit normal vector, and the normal vector n is the vector corresponding
to the 1-form which arises with �lling the 2nd, 3rd, and 4th slots of the volume form with
∂x/∂ui, i = 1, 2, 3 and integrating d3u. The derivation is the same (with one more slot in vol)
as the 3d case with p = 2.

Problem 3.5(1) Magnetic �eld lines are curves, along which no magnetic force acts on a
moving particle, i.e., let the curve be parametrised as x(s), then v(s) = ẋ(s). The force acting
is f = −ivB. Prescribing f = 0 along the line yields at each parameter value s 2 constaints
on ẋ [it has 3 components, and we know that B(ẋ, ẋ) = 0 (anti-symmetry of a form)]. There
is also a freedom: reparametrisation, e.g., in an arbitrary metric choosing ∥ẋ∥ = 1 sets the
parametrisation to line-length in that metric.

In vector notation, the prescription that ẋ×B = 0 determines ẋ up to its magnitude, and
an arbitrary metric may be used to �x that. The resulting curve will not depend on the metric,
only the �velocity� along the curve.

Problem 3.5(2) The top 2-torus is a compact, 2-sided surface in the 3-torus, with no bound-
ary. Applying (3.43) to it thus yields

0 =

∫∫
Top

(
4πj +

∂ ∗ E
∂t

)
,

therefore ∫∫
Top

∂ ∗ E
∂t

= 4πj .

As the surface is time-independent, this yields the desired results.

4 The Lie derivative

Problem 4.1(1) To obtain in coordinate form the bracket of two vector �elds, let us �st note
that for any vector �eld v and function f , vf = vi∂if , so

[X,Y]f = X(Yf)−Y(Xf)

= X(Y i∂if)−Y(X i∂if) = XjY i∂i∂jf +Xj∂jY
i∂if − Y jX i∂i∂jf − Y j∂jX

i∂if

= (Xj∂jY
i − Y j∂jX

i)∂if = [X,Y]i∂if ,

and (4.6) can be read o�.
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Problem 4.1(2) In these coordinates, [X,Y]i = Xj∂jY
i − Y j∂jX

i, and, as both vectors are
tangent to V , their coordinates for i > p or j > p vanish on V . On one hand, only derivatives
along V are considered, therefore Xj∂jY

i = 0 for i > p, and similarly for X ↔ Y , therefore,
for i > p, [X,Y]i = 0, i.e., the bracket is also a tangential vector �eld.

Problem 4.1(3) The �rectangle� corresponding to the coordinate vector �elds is moving from
a point (ϑ, φ) to (ϑ + ∆, φ), then to (ϑ + ∆, φ + ∆), then to (ϑ, φ + ∆), and �nally back to
(ϑ, φ) along coordinate lines. The �nal point coincides with the initial one, the �rectangle� is
closed.

Now the unit vectors are eϑ = ∂ϑ, and eφ = (1/ sinϑ)∂φ. Their Lie-bracket is therefore

[eϑ, eφ] = −
cosϑ

sinϑ
eφ .

Let us consider the orbits. Let us move in both direction with a parameter value ∆. The �rst
movement is along the ϑ coordinate line, and as in this case ∂ϑ is already a unit vector, the
�nal point is (ϑ + ∆, φ). Now we move along the φ coordinate line, along the vector eφ to
parameter value ∆. Along the line, ϑ is unchanged, so we may use eφ = ∂φ/ sinϑ, i.e., we
may say that we are moving along the vector ∂φ to parameter value 1/ sin(ϑ + ∆)∆, to the
point (ϑ + ∆, φ + ∆/ sin(ϑ + ∆)). Next we move along the coordinate line θ, with parameter
value −∆, arriving in (ϑ, φ +∆/ sin(ϑ +∆)), and �nally, along the vector eφ with parameter
value −∆, to (ϑ, φ+ (1/ sin(ϑ+∆)− 1/ sinϑ)∆) ≈ (ϑ, φ− cosϑ/ sin2 ϑ∆2). As it can be read
o�, this is moving to parameter value −∆2 cosϑ/ sin2 ϑ along ∂φ, or equivalently to parameter
value −∆2 cosϑ/ sinϑ along eφ, or to parameter value ∆2 along − cosϑ/ sinϑeφ, i.e., along the
Lie-bracket computed above.

Problem 4.2(1) As the Lie-derivative commutes with the exterior derivative,

LXα = (LXai)dx
i + aiLx(dx

i) = (Xai)dx
i + aid(LXx

i) = (Xai)dx
i + aid(Xx

i) ,

where Xai = Xj∂jai, and Xxi = Xj∂jx
i = X i and dX i = ∂jX

idxj, yielding

LX(aidx
i) = (Xj∂jai + aj∂iX

j)dxi ,

or equivalently (LXα)i = Xj∂jai+aj∂iX
j. This needs to be compared with (LXY)i = [X,Y]i =

Xj∂jY
i − Y j∂jX

i. Note the sign, and the indices in the second term: the free index there is
not that of X, but of the derivative of the components of X.

Problem 4.2(2) If θ is an antiderivation, θ(α ∧ β) = (θα) ∧ β + α ∧ (θβ); similarly, if A is
an antiderivation, A(α ∧ β) = (Aα) ∧ β + (−1)pα ∧ (Aβ), where α is an arbitrary p-, and β an
arbitrary q-form.

Using these properties, assuming θ mapping p-forms into p+r forms and A into p+s-forms,
θA(α ∧ β) = θ((Aα) ∧ β + (−1)pα ∧ (Aβ)) = (θAα) ∧ β + (Aα) ∧ θβ + (−1)p(θα) ∧ (Aβ) +
(−1)pα∧ (θAβ), and Aθ(α∧ β) = A((θα)∧ β +α∧ (θβ)) = (Aθα)∧ β + (−1)p+r(θα)∧ (Aβ) +
(Aα) ∧ (θβ) + (−1)pα ∧ (Aθβ), and collecting terms yields, taking into account that r is even,

[θ, A](α ∧ β) = ([θ, A]α) ∧ β + α ∧ ([θ, A]β) ,

i.e., the commutator is an antiderivation.
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Similarly, assuming A mapping p-forms into p + r-, and B into p + s-forms, AB(α ∧ β) =
A((Bα)∧β+(−1)pα∧(Bβ)) = (ABα)∧β+(−1)p+s(Bα)∧Aβ+(−1)p(Aα)∧(Bβ)+α∧(ABβ) ,
and BA(α∧β) = B((Aα)∧β+(−1)pα∧(Aβ)) = (BAα)∧β+(−1)p+r(Aα)∧(Bβ)+(−1)p(Bα)∧
(Aβ) + α ∧ (BAβ), and collecting terms yields, taking into account that r and s are both odd,
yields

{A,B}(α ∧ β) = ({A,B}α) ∧ β + α ∧ ({A,B}β) ,
i.e., that the anticommutator is a derivation.

Problem 4.2(3) Let us consider a di�erential of a function,

LXiYdf = LX(Yf) = X(Yf) ,

and
iYLXdf = (LXdf)(Y) = Y(Xf) ,

as shown in the Proof of Theorem (4.20), so Theorem (4.24) is shown for di�erentials. Next,

LXiYfdg = LX(fYg) = (Xf)(Yg) + fXYg ,

and

iYLXfdg = (LXfdg)(Y) = (Xfdg + fLXdg)(Y) = (Xf)(Yg) + f(LXdg)(Y)

= (Xf)(Yg) + fYXg ,

again, yielding the desired result for a linear combination of di�erentials, thus, one-forms.
As both sides of the equation in Theorem (4.24) are derivations, it is possible to proceed

with induction.

Problem 4.2(4) α = αidx
i, so dα =

∑
i<j(∂iαj − ∂jαi)dx

i ∧ dxj. Evaluated on X and Y
yields

dα(X,Y) =
∑
i<j

(X iY j −XjY i)∂jαi .

Similarly,
X(α(Y)) = X(αiY

i) = Xj(∂jαiY
i + αi∂jY

i) ,

and Y(α(X)) = Y j(∂jαiY
i + αi∂jY

i), so for the di�erence,

X(α(Y))−Y(α(X)) = dα(X,Y) + α([X,Y])

is obtained.
Some notes for Sec. 4.3c. A one-parameter family of di�eomorphisms on M is extended to

a �ow on R×M . A �ow is a one-parameter group of di�eomorphisms. How is this done? The
text only de�nes it via the derivative vector �eld, so that let t,y be a point in the extended
manifold, then it is written as t,Φtx, and let the derivative of this point be

v(t,y) =
d

dt
(t,y) =

d

dt
(t,Φtx) = v(t,w(t,x)) .

Let us note that the explicit formula for the �ow is

Φ̂t(t0,y) = (t0 + t,Φt0+tΦ
−1
t y) ,

or equivalently,
Φ̂t(t0,Φt0x) = (t0 + t,Φt0+tx) .

It is quite easy to verify that the derivative vector �eld of this satis�es the condition prescribed
in the text.
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Problem 4.3(1) Let us use the general formula (4.43). To this end, the curve integral is the
integral of a one-form α associated with the vector A, by lowering its index with the metric,∫

C(t)

α =

∫
C(t)

[
∂α

∂t
+ ivdα + divα

]
,

and use the �dictionary� at the end of Sec. 2.10. The �rst term is obvious, it yields the ∂A/∂t
term. The second one, dα = icurlAvol, therefore ivdα = ivicurlAvol = −β, where β is the
two-form associated with v× curlA, and the last term, ivα = v ·A, and its exterior derivative
is, of course, the gradient.

Problem 4.3(2) Let α in this case be the two form α = iBvol. The LHS is then
∫∫

S
α.

Again, the �rst term on the RHS is obvious. The second term, using dα = (divB)vol, is
ivdα = (divB)ivvol integrated over the surface, i.e., the integral of (divB)v · dS. The third
term is ivα = iviBvol = −vol(v ×B, ·, ·), again yielding the correct term.

Problem 4.3(3) Again, �rst term is trivial. The second also, the exterior derivative of a
maximal form vanishes. The last one, using ivρvol = ρivvol, is d(ρivvol) = div(ρv)vol.

Problem 4.3(4) Use the solution of Problem 4.3(2), and take into account that divB = 0 (no
magnetic monopoles), use curlE = −∂B/∂t in the �rst term, and then the Gauss-Stokes-etc.
theorem.

Problem 4.3(5) (i) Simple calculation in cartesian coordinates, using the results of 4.2(1)
shows that the LHS is

(∂tνi + vj∂jνi + νj∂iv
j)dxi

and the RHS (
νj∂iv

j + ∂iϕ−
1

ρ
∂ip

)
dxi .

The last term on the LHS and the �rst one on the RHS cancel.
(ii) Using the derivation Law of an integral

d

dt

∮
C(t)

ν =

∮
C(t)

Lv+∂tν =

∫
A(t)

dLv+∂tν ,

where A(t) is some surface whose boundary is the curve C(t), ∂A(t) = C(t). On the other hand,
using the form of the Euler equations shown in (i), the Lie-derivative is already the exterior
derivative of a form, so its exterior derivative vanishes.

(iii) Using the commutativity of the Lie-derivative with the exterior derivation, (4.20), we
get

Lv+∂tω = Lv+∂tdν = dLv+∂tν ,

then use the form of the Euler equations shown in (i), and that d2 = 0 to get the desired result.
(iv) The form ω2 = iω/ρρvol is invariant, Lv+∂tω

2 = 0, so what we know is that

0 = LXω
2 = LXiω/ρρvol ,
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and using (4.24), LX ◦ iω/ρ = iω/ρ ◦LX + i[X,ω/ρ]

0 = iω/ρLXρvol + i[X,ω/ρ]ρvol .

The �rst term vanishes because ρvol is invariant, therefore the second term must vanish as well,

0 = [X,ω/ρ] = LXω/ρ = Lv+∂t(ω/ρ) .

(v) The integrand in the helicity integral is (v · ω)vol = ν ∧ ω. Let us now use

d

dt

∫
V (t)

ν ∧ ω =

∫
V (t)

LX(ν ∧ ω) =
∫
V (t)

[(LXν) ∧ ω + ν ∧ (LXω)] .

The second term vanishes as per (iii). Also dω = 0 as ω = dν. We may therefore write that
the derivative equals [using (i)]

=

∫
V (t)

d{. . . } ∧ ω + {. . . }dω =

∫
V (t)

d{. . . }ω =

∫
∂V (t)

{. . . }ω =

∫
∂V (0)

ϕ∗
t{. . . }ω ,

which vanishes, as ω is time invariant, ϕ∗
tω = ω, and ω vanishes on ∂V (0).

Problem 4.3(6) (i)

Lv+∂tB =
∂B

∂t
+LvB = −dE1 + ivdB + divB = −d(E1 + ivB

2) = 0 ,

where we have used the Maxwell equations dE = −∂B/∂t and dB = 0. In the bracket, we have
a one-form, to which corresponds the vector E+ v ×B, the vanishing electromotive intensity.

(ii) Using

d/dt

∫
U

ν ∧ B =

∫
U

LX(ν ∧ B) =

∫
U

(LXν) ∧ B ,

as LXB = 0. Let us now use the Euler equations, LXν = d{. . . } − iJB/ρ, to iJB corresponds
the vector −v ×B, then to iJB ∧ B corresponds −(v ×B) ·B = 0, so what remains is

=

∫
U

d{. . . } ∧ B =

∫
U

d({. . . }B) =

∫
∂U

{. . . }B = 0 ,

as Bn = 0 on ∂U . We have used dB = 0.

Problem 4.4(1) For xi = qi, we have i∂/∂qidpj ∧ dqj = −dpjδji = −dpi, and for xn+i = pi,
i∂/∂xn+iω = i∂/∂pidpj ∧ dqj = δijdq

j = dqi, and the dpi, dq
i are the coordinate basis 1-forms.

Problem 4.4(2) As ω =
∑

j dpj ∧ dqj,

ωn =
∑

j1,...,jn

dpj1 ∧ dqj1 ∧ · · · ∧ dpjn ∧ dqjn .

As the exterior product is antisymmetric, only those terms constribute where j1, . . . , jn are a
permutation of 1, 2, . . . , n. These can be reordered, moving all the dqis left and in the order of
their indices, and all the dqis right, and in the order of the indices. Moving the dqis to the left
of the dpis needs movint he �rst one over 1, the second one over 2, etc., the nth over n dps, so
there is a sign of (−1)1+2+···+n = n(n+1)/2. Then the same permutation is applied to the dpis
and the dqis, so the sign of that drops out. There are n! equal terms, yielding

ωn = (−1)
n(n+1)

2 n!dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn .
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Problem 4.4(3) Orientation is a way to chart a manifold with coordinate maps such that
each transition function has a Jacobian with positive determinant. Let us consider a chart on
the manifold T ∗M that covers it. Then it is possible to �ip the orientation of those whose form
∧idxi = ξ(x)ωn with ξ < 0. The function ξ cannot vanish, as that would mean that there the
coordinates are degenerate, therefore, it also cannot change sign.

Problem 4.4(4) We shall use some of the calculations from the solution of Problem 4.4(1).
Let us write X = X i∂/∂qi +X i+n∂/∂qi, and, as ω = dpi ∧ dqi,

iXω = −X idpi +X i+ndqi ,

and comparing this with

−dH = −∂H
∂pi

dpi −
∂H

∂qi
dqi ,

yields, upon comparison,

dqi

dt
= X i =

∂H

∂pi
, and

dpi
dt

= X i+n = −∂H
∂qi

,

i.e., Hamilton's equations.

Problem 4.4(5) Using Cartan's theorem (4.23),

LXω = iXdω + diXω ,

where the �rst term vanishes due to ω = dλ, and the second one,

diXω = −d(−dH) = 0 .

As for the volume form, ωn = ∧nω, therefore

LXω
n = (LXω) ∧ ω ∧ · · · ∧ ω + ω ∧ (LXω) ∧ · · · ∧ ω + · · · = 0 .

Problem 4.4(6) As the T's are tangent to VE, dHTi = 0, so

dH ∧ σ(N,T2, . . . ,T2n) = (NH)σ(T2, . . . ,T2n) ,

and the same holds for σ′. On the other hand, for both dH∧σ = ±/n!∧ωn holds, so dH∧(σ−σ′)
vanishes. As a consequence, σ and σ′ must give the same value on any 2n− 1-tuple of vectors
tangent to VE.

Problem 4.4(7)

dH ∧ σ
(
∇H
∥∇H∥2

,T2, . . . ,T2n

)
= σ(T2, . . . ,T2n)

on one hand, and, as dH ∧ σ = ±1/n!ωn,

(dH ∧ σ)
(
∇H
∥∇H∥2

,T2, . . . ,T2n

)
= ±n!ωn

(
∇H
∥∇H∥2

,T2, . . . ,T2n

)
,

which is invariant, as ω, ∇H/∥∇H∥2 and the T's all are.
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Problem 4.4(8) Λ = pidq
i − Hdt, so Ω = dΛ = dpi ∧ dqi − dH ∧ dt, dH = ∂H/∂qidqi +

∂H/∂pidp
i + ∂H/∂tdt and X = X i∂/∂qi +X i+n∂/∂pi + ∂/∂t, so

iXΩ = −X idpi +X i+ndqi −X i∂H/∂qidt−X i+n∂H/∂pidt+ ∂H/∂qidqi + ∂H/∂pidp
i ,

(note that the ∂H/∂t term does not contribute to Ω as dt ∧ dt = 0). In iXΩ the coe�cients of
all the basis forms dqi, dpi and dt must vanish in order for iXΩ = 0, yielding

dpi :
dqi

dt
= X i =

∂H

∂pi
,

dqi :
dpi
dt

= Xn+i = −∂H
∂qi

,

dt : 0 =
∂H

∂qi
dqi

dt
+
∂H

∂pi

dpi
dt

,

(in the last equation, we have already used X i = dqi/dt, Xn+i = dpi/dt), and as dH/dt =
(∂H/∂qi)(dqi/dt) + (∂H/∂pi)(dpi/dt) + ∂H/∂t, the desired result, dH/dt = ∂H/∂t is obtained
along with Hamilton's equations.

Problem 4.4(10) Let S denote the surface. The integral is that of the form Λ = pidq
i−Hdt

over the two connected parts of ∂S, i.e., the integral over the whole is their di�erecne (due to
opposite induced orientation). So, using the Gauss-Stokes-etc. theorem, the di�erence equals
to ∫

S

dΛ =

∫
S

Ω .

As the surface is swept out by orbits of X, we may choose one coordinate along C and the
other as the �time� parameter along the orbits to coordinatise C, therefore∫

S

Ω =

∫
Ω(X, Y )dτdc ,

where the two coordinates are τ and c, and the corresponding tangent vectors are X and Y .
As X is the Hamiltonian vector �eld, iXΩ = 0, therefore the integral vanishes.

Problem 4.4(11) We know that S ′(0) =
∫
C0

L∂x/∂αΛ where Λ = pidq
i − Hdt. The vector

�eld J = ∂x/∂α. To calculate the Lie-derivative, we use Cartan's formula LJ = iJ ◦ d + d ◦ iJ .
The �rst term already yields the desired result, we only need to show thatt he second one
vanishes.

Firstly,

J =
∂qi(u, α)

∂α

∂

∂qi
+
∂pi(u, α)

∂α

∂

∂pi
+
∂t(u, α)

∂α

∂

∂t
.

so

ijΛ = pi
∂qi(u, α)

∂α
−H∂t(u, α)

∂α
.

Using the Newton-Leibniz-Gauss-Stokes theorem,∫
C0

diJΛ = [iJΛ]
b
a ,

and the condition for a variation is that J at the boundaries, a and b has neither ∂/∂qi nor
∂/∂t components, i.e., there both ∂qi/∂α and ∂t/∂α vanish.
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Problem 4.4(12) Let C(u, α) an arbitrary variation, then S ′(0) =
∫
C0
iJΩ. The tangent

vector is

T =
∂qi(α, t)

∂t

∂

∂qi
+
∂pi
∂t

∂

∂pi
+
∂

∂t

as the curve is now parameterised by t, α.∫
C0

iJΩ =

∫
dtΩ(J, T ) ,

so that us what needs to be calculated.

iJΩ = −∂q
i

∂α
dpi +

∂pi
∂α

dqi +
∂t

∂α

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
− ∂H

∂qi
∂qi

∂α
dt− ∂H

∂pi

∂pi
∂α

dt

Inserting T as well

iT iJΩ =
∂qi

∂α

(
−∂pi
∂t
− ∂H

∂qi

)
+
∂pi
∂α

(
∂qi

∂t
− ∂H

∂pi

)
+
∂t

∂α

(
∂H

∂qi
∂qi

∂t
+
∂H

∂pi

∂pi
∂t

)
.

This is integrated over dt from a to b. The variations ∂qi/∂α, ∂pi/∂α and ∂t/∂α play the role
of the arbitrary functions in the fundamental theorem of the calculus of variations, therefore,
their coe�cients must vanish on C0. Integrating on this curve, ∂x/∂t may be replaced by dx/dt,
yielding Hamilton's equations.

Problem 4.4(13) If F were the Hamiltonian, XF was the Hamiltonian vector �eld, for which
this has been shown. To repeat the argument, let ΦF be the �ow of X,

d

dt
[ϕ∗

Ftω]x(t) = Φ∗
Ft[LXF

ω]x(0) = 0 ,

as shown in the solution of Problem 4.4(5). Consequently, ΦFt is canonical.
Now (F,G) is de�ned as (F,G) = XG(F ) = dF (XG) = −ω(XF , XG). With the same

argument (G,F ) = −ω(XG, XF ), and using the antisymmetry of the symplectic form, we
obtain (F,G) = −(G,F ).

To obtain the coordinate form, let us calculate

dF =
∂F

∂qi
dqi +

∂F

∂pi
dpi

and ω = dpi ∧ dqi, do

XF =
∂F

∂pi

∂

∂qi
− ∂F

∂qi
∂

∂pi
, XG =

∂G

∂pi

∂

∂qi
− ∂G

∂qi
∂

∂pi
,

so

(F,G) = dF (XG) =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
=
∂(F,G)

∂(qi, pi)
.

Problem 4.4(14) According to Theorem (4.24),

i[XF ,XG]ω = LXF
iXG

ω − iXG
LXF

ω = LXF
iXG

ω = −LXF
= −d(LXF

G)

= −d(XF (G)) = −d(G,F ) = d(F,G) .

This shows that the vector associated to d(F,G) is [XF , XG]. The sign may be a matter of
de�nition.
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5 The Poincaré lemma and potentials

Problem 5.5(1) Let γ = αp ∧ dβq the product of a closed form, dα = 0, and an exact one,
dβ. In this case,

d((−1)pα ∧ β) = (−1)pdα ∧ β + α ∧ dβ = α ∧ dβ ,

as dα = 0.

Problem 5.5(2) Any such form can be written as β = ivvol. Then the closedness of β can
be written out as

dβ = divvol = (div v)vol ,

i.e., the vector v is divergenceless (source-free). The integrand contains xjbjK = xjvivolijk =
(ixivvol)k, the k component of the covector corresponding to the vector −x× v, yielding

v = curlw , w =

∫ 1

0

v(τx)× (τx)dτ .

Problem 5.5(3) Let us choose cylindrical coordinates r, φ, z with the wire along the z axis.
In this case, using the metric g = dr2+ r2dφ2+dz2, we obtain the vector B = 2j/r2∂/∂φ, and
then vol = r2dr ∧ dφ ∧ dz, if iBvol = −2jdr ∧ dz. This is a closed form, as its components are
constant. Let us now construct a vector potential such that dA = B. An example is −2jrdz,
so that d(−2jr) = −2jdr, dA = d(−2jrdz) = −2jrdr ∧ dz.

Problem 5.5(4) With the metric given in the book, the volume form is

vol = sin4 α sin2 ϑdα ∧ dϑ ∧ dφ .

With this,
∗E = iEvol = E(α) sin4 α sin2 ϑdϑ ∧ dφ ,

and of its exterior derivative is thus

d ∗ E =
d

dα

[
E(α) sin4 α

]
sin2 ϑdα ∧ dϑ ∧ dφ ,

so E(α) = E0/ sin
4 α must hold in order that this exterior derivative vanishes. The integral∫

S(α)
is a constant α 3-sphere. The 2-form ∗E is pulled back on this sphere, on which two basis

vectors are ∂/∂ϑ and ∂/∂φ, so the integral is∫
S(α)

∗E = E0

∫
S(α)

sin2 ϑdϑ ∧ dφ =
4π

3
E0 ,

which must agree with the 4π times the charge, so E0 = 3q. The electric covector is then
obtained by lowering the indices of E = 3q/sin4α∂/∂α with the metric, whose α, α component
is 1, yielding

E =
q

3 sin4 α
dα ,

and so dE = 0 as dα ∧ dα = 0.
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Problem 5.5(5) The charge is calculated as

q =

∫
M

ρvol =
1

4π

∫
M

d ∗ E = 0 ,

using Gauss's theorem and ∂M = ∅.

6 Holonomic and non-holonomic contraints

Problem 6.1(1) The di�eomorphism Φ is de�ned as

Φt = ϕk,tk ◦ · · · ◦ ϕ1,t1 ,

where ΦA is the �ow of the vector �eld XA. The tangent vector ∂/∂tA is de�ned as the tangent
vector of the curve tA = t, tb = 0 (B ̸= A) at t = 0, the image of which is Φ(tA = t, tB =
0)(0) = ϕA,tA(x), of which, the derivative at tA = 0 is XA, as ΦA is the �ow of XA.

Problem 6.1(2) Using Frobenius's theorem, it is evident as ∆ is spanned by a single vector
�eld, and the bracket is antisymmetric.

Without Frobenius it is evident, as the submanifolds are the integral curves of the vector
�eld.

Problem 6.2(1) We need to show that

θβ = dyβ − bβi (x, y)dxi

are independent. A condition for this is that their wedge product is non-zero,

∧βθβ = dy1 ∧ · · · ∧ dyr + . . . ̸= 0 ,

as all the terms left out contain some dxi and the dxis and dyis are independent.

2 Geometry and topology

7 R3 and Minkowski space

Problem 7.1(1) The velocity vector is

v =
dx

dt
= (−ω sinωt, ω cosωt, k)T ,

and its absolute value is given by v2 = ω2 + k2, therefore T = v/
√
ω2 + k2, the acceleration is

a =
dv

dt
= (−ω2 cosωt,−ω2 sinωt, 0)T

and this is to be split as a = (dv/dt)T + κv2n, so κv2n = a − (aT)T, but a · T = 0, as
the magnitude of the velocity is constant, so the acceleration only has the κv2n term, yielding
κv2 = ω2, the curvature is thus

κ =
ω2

ω2 + k2
.
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Problem 7.1(2) Using primes for arc-length derivatives, x′ = T, T′ = κn and B = T × n,
so B′ = κn× n+T× n′ = T× n′. As B is a unit vector, its derivative is orthogonal to itself.
So is n, therefore, n′ is in the plane spanned by T and B. Consequently, T× n′ is parallel to
T×B = T× (T× n) = −n. This justi�es the de�nition of the torsion.

Let us now express n as n = B×T, so

dn

ds
= B′ ×T+B×T′ = τn×T+B× κn = −κT− τB .

Problem 7.1(3) Let us consider a curve x(t). Now∫
(pαdx

α −mc2dt) =
∫ [

pα
dxα

dt
−mc2

]
dt =

∫ [
mv2 −mc2

]
dt =

∫
m0√

1− v2/c2
[v2 − c2]

= −m0c
2

∫ √
1− v2/c2dt = −m0c

2

∫
dτ .

The −V dt term is simply kept as it is.

Problem 7.2(1) We have f = −γq(ivE)dt + γq(E − iv/cB) , and u = (γ, γv) = γ∂/∂t + γv,
so introducind E ∧ dt, iu(E ∧ dt) = −γivEdt+ γE, and what remains in f is thus q times this,
and the terms containing B, the coe�cients can be identi�ed, yielding

f = −qiuF , F = E ∧ dt+
1

c
B .

Problem 7.2(2) The transformation is such that dt is replaced by dt = d(γt′ + vx′) =
γdt′ + γvdx′ and dx = d(γx′ + vt′) = γdx′ + γvdt′. In F = Fi<jdx

i ∧ dxj this in�uences the
components as follows: for F01 = −E1,

−E1dt ∧ dx = −E1(γdt
′ + γvdx′) ∧ (γdx′ + γvdt′) = −E1γ

2(1− v2)dt′ ∧ dx′ = −E1dt
′ ∧ dx′ ,

yielding E ′
1 = E1. For E2, dt

′ ∧ dy terms come from dt∧ dy and dx∧ dy, dt∧ dy = γdt′ ∧ dy+
γvdx′ ∧ dy and dx ∧ dy = γdx′ ∧ dy + γvdt′ ∧ dy, so

E ′
2 = γE2 − γvB3 ,

and dx′ ∧ dy also comes from these two,

B′
3 = −γvE2 + γB3

and similarly for dx ∧ dz and dt ∧ dz.

Problem 7.2(3) F = E ∧ dt+ B/c, so

F ∧ F = −2dt ∧ E ∧ B/c

and as E ∧ B = E · Bvol3, dt ∧ vol3 = vol4 we obtain the desired results (returning to units
c = 1),

F ∧ F = −2E ·Bvol4 .

Similarly, ∗F 2 = − ∗ B ∧ dt+ ∗E, so

F ∧ ∗F = −dt ∧ E ∧ ∗E + dt ∧ B ∧ ∗B ,

and again using the formulae in sec. 2.10, we obtain the relation to be proven.
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Problem 7.2(4) Eq. (3.32) reads

∂σ3

∂t
+ dj = 0 ,

and the charge-current form S is de�ned as

S = σ3 − j2 ∧ dt ,

where σ3 = ρvol3, so dσ3 = ∂ρ/∂tdt ∧ vol3 = dt ∧ ∂σ/∂t, and dj ∧ dt = (dj) ∧ dt = (dj) ∧ dt,
as the time derivative part of d contains a dt, and dt ∧ dt = 0, so

dS = dt ∧ ∂σ
3

∂t
− (dj) ∧ dt = −

(
∂σ

∂t
+ dj

)
∧ dt .

Problem 7.2(5) As the function H is invariant, and so is the four dimensional volume form
vol4 = dt ∧ dx ∧ dy ∧ dz, we may try to split the volume form as in classical mechanics. As H
is an invariant function, so is dH and invariant form.

dH = 2tdt− 2xdx− 2ydy − 2zdz ,

so, on the upper hyperboloid

dH ∧ dx ∧ dy ∧ dz

t
= 2vol4 .

Evaluating this on vectors such that N is normal, Ti, i = 1, 2, 3 are tangent to the hyperboloid,
and they are invariant, to see that the second value of the form is indeed constant. As that of
the 4-volume form and of dH both are, so must that of the volume form on the hyperboloid.

It is possible to proceed with the same steps on the lower component of the hyperboloid.

8 The geometry of surfaces in R3

Problem 8.1(1) x = a sinϑ cosφ, y = a sinϑ sinφ, and z = a cosϑ, where ϑ and φ play the
role of the coordinates u. Now

xϑ =
∂x

∂ϑ
= (a cosϑ cosφ, a cosϑ sinφ,−a sinϑ)T ,

and

xφ =
∂x

∂φ
= (−a sinϑ sinφ, a sinϑ cosφ, 0)T ,

yielding the metric components

gϑ,ϑ = uϑ · uϑ = a2 , gφ,φ = uφ · uφ = a2 sin2 ϑ , gϑ,φ = uϑ · uφ = 0 .

Equivalently, the metric is
g = ds2 = a2(dϑ2 + sin2 ϑdφ2) ,

where dϑ2 = dϑ⊗ dϑ, and dφ2 = dφ⊗ dφ.
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Problem 8.1(2) The angle between the tangent vector and the meridian is given

cosα =
⟨T,xϑ⟩
∥T∥∥xϑ∥

,

where T = (1, dφ/dϑ) and the tangent vector of the meridian has components (1, 0), so

cosα =
1√

1 + (φ′)2 sin2 ϑ
, 1 + sin2 ϑ(φ′)2 =

1

cosα

The arc length is thus

s = a

∫ π

0

√
1 + (ϕ′)2 sin2 ϑdϑ =

πa

cosα
.

We have assumed that cosα > 0, i.e., the curve goes down. In the other case, reverse the
parametrisation, obtain πa/| cosα|.

Problem 8.1(3) The surface element is
√
gdϑdφ = R2 sinϑdϑ ∧ dφ, so the integral to be

computed is

A = R2

∫ π/2

π/4

sinϑdϑ

∫ π/4

0

dφ = R2 [− cosϑ]
π/2
π/4 [φ]

π/4
0 =

πR2

4
√
2
.

Problem 8.1(4) The vector �elds tangent to coordinate lines on the surface area

x1 =
∂x

∂u1
=

 1
0
2x

 , and x1 =
∂x

∂u2
=

 0
1
−4y

 .

Using these, the metric components area

g11 = u1 · u1 = 1 + 4x2 ,

g22 = u2 · u2 = 1 + 16y2 ,

g12 = u1 · u2 = −8xy .
The matrix of the second fundamental form is computed using the normal vector

N =
x1 × x2

|x1 × x2|
=

(−2x, 4y, 1)T

|(−2x, 4y, 1)|
=

1√
1 + 4x2 + 16y2

−2x4y
1

 .

The matrix bαβ is that of the second fundamental form, mapping a vector X to the derivative
of the normal vector in that direction,

bαβ = −∂N
α

∂uβ

which requires derivatives of the normal vector, a bit complicated. In stead, we follow the path
outlined in the book, using the second derivatives of the coordinatiosation,

x11 =
∂2x

∂u21
= (0, 0, 2)T ,

x22 =
∂2x

∂u22
= (0, 0,−4)T ,

x12 =
∂2x

∂u1∂u2
= 0 .
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This is used to compute the lower-index version, the matrix of the second fundamental form,

bαβ = xαβ ·N ,

yielding

(bαβ) =
1√

1 + 4x2 + 16y2

(
2 0
0 −4

)
.

To raise the index α, the inverse metric is needed,

g−1 =
1

1 + 4x2 + 16y2

(
1 + 16y2 8xy

8xy 1 + 4x2

)
,

so

(bαβ) = g−1(bαβ) = g−1(bαβ) =
1

(1 + 4x2 + 16y2)3/2

(
2 + 32y2 −32xy
−32xy −4− 16x2

)
,

which yields

(bαβ)
∣∣
(0,0)

=

(
2
−4

)
.

Problem 8.1(5) Using the notation x = x1 = u1, y = x2 = u2, in the new coordinates
the surface is such that x = (x, y, z(x, y)). The coordinate vector �elds are x1 = (1, 0, zx),
x2 = (0, 1, zy) and so x11 = (0, 0, zxx), x12 = x21 = (0, 1, zxy) and x22 = (0, 0, zyy), where
coordinates in the index denote derivatives w.r.t. that coordinate.

The normal vector is N = (−zx,−zy, 1)/
√

1 + z2x + z2y , and so the matrix of the second
fundamental form is

bαβ =
1√

1 + z2x + z2y

(
zxx xxy
zxy zyy

)
.

In the new coordinate system, it has also been assumed that at 0, the x, y plane is tangent to
the surface, which, looking at the vectors xα spanning it, is equivalent to zx(0) = zy(0) = 0 in
addition to z(0, 0) = 0. This substituted into bαβ(0) simply shows that bαβ(0) = ∂2z/∂xα∂xβ,
and so the formula to be proven is just the leading term of the Taylor series of z(x1, x2).

Problem 8.2(1) (i) let us consider f(t) = f(x(t)). Its derivative is ḟ(t) = d/dt⟨x(t), bx(t)⟩ =
⟨ẋ(t), bx(t)⟩ + ⟨x(t), bẋ(t)⟩ = 2⟨ẋ(t), bx(t)⟩. As e1 is a maximum location, t = 0 is one too for
the one-parameter function, therefore 0 = ḟ(0) = ⟨ẋ, be1⟩.

(ii) Any vector orthogonal to e1 can be considered as the tangent of a curve at e1 on S
n−1 as

Te1S
n−1 = E⊥

1 . Therefore (i) showed that b restricted to E⊥
1 maps into E⊥

1 . The mapping b is
self-adjoint, a for any vectors v1,2 ∈ E⊥

1 , ⟨v1, bv2⟩ = B(v1, v2) = B(v2, v1) = ⟨v2, bv1⟩ = ⟨bv1, v2⟩.
Having shown that b : E⊥

1 → E⊥
1 is self adjoint, the induction step can be performed, and

is evident.

Problem 8.2(2) The Gauss curvature K is the determinant of b [more precisely, (bαβ)],

K = det(bαβ) = −
8

(1 + 4x2 + 16y2)2
, K(0, 0) = −8 ,

and the mean curvature is Tr b [=Tr(bαβ) = bαα],

H = Tr b = −2 1 + 8x2 − 16y2

(1 + 4x2 + 16y2)3/2
, H(0, 0) = −2 .
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Problem 8.2(3) The unit normal of the curve is calculated as

T =
(1, 1)T

|(1, 1)|
=

(1, 1)T√
2(1 + 2x2 − 8xy + 8y2)

, T(0) =
(1, 1)√

2
,

and using this, the curvature is

κ = −B(T,T) =
1

(1 + 2x2)
√
1 + 20x2

, κ(0) = 1 .

The sign has been chosen as − because the curve is downwards curved (the coe�cient of y is
larger in z), and the normal chosen points up.

Problem 8.2(4) Let T1,2 be the unit eigenvectors corresponding to the principal curvatures.
The unit tangent vector of a curve that makes an angle θ with T1 is T = cos θT1 + sin θT2,
and the curvature is computed as

κ = ⟨T, b(T)⟩ = κ1 cos
2 θ + κ2 sin

2 θ ,

using b(Ti) = κiTi and that for a self-adjoint mapping, the eigenvectors are orthogonal to each
other.

Problem 8.2(5) Simple calculation, coordinate vectors are x1 = (1, 0, fx)
T , x2 = (0, 1, fy)

T ,
the normal is

N =
(−fx,−fy, 1)T

W 1/2
,

and the metric

g =

(
1 + f 2

x fxfy
fxfy 1 + f 2

y

)
,

and the inverse is

g−1 = W−1

(
1 + f 2

y −fxf y

−fxf y 1 + f 2
x

)
,

the directional derivatives of the normal in these directions is

(bαβ) = W−1/2

(
fxx fxy
fxy fyy

)
,

and so

(bαβ) = g−1(bαβ) = W−3/2

(
fxx(1 + f 2

y )− fxyfxfy fxy(1 + f 2
y )− fxfyfyy

fxy(1 + f 2
x)− fxfyfxx fyy(1 + f 2

x)− fxfyfxy

)
.

Using these,

K = det(bαβ) =
fxxfyy − f 2

xy

W 2
,

and

H = Tr(bαβ) =
fxx(1 + f 2

y )− 2fxfyfxy + fyy(1 + f 2
x)

W 3/2
.
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Problem 8.3(1) The antipodal map is a : xi → −xi, so

a∗ω = a∗
∑
i

(−1)i−1xidx1 ∧ . . . d̂xi · · · ∧ dxn+1

=
∑
i

(−1)i−1(−xi)d(−x1) ∧ . . . d̂(−x)i · · · ∧ d(−xn+1) = (−1)n+1ω ,

and the integral of ω is one. (One could start with the ω = irdx
1 ∧ · · · ∧ dxn+1 form, and note

that the vector �eld r is invariant to the antipodal map.)

Problem 8.3(2) The Jacobian maps the di�erential form dx ∧ dy = (−i/2)dz ∧ dz̄ into
f∗dx ∧ dy = ∂(u, v)/∂(x, y)dx ∧ dy. To calculate the Jacobian we need

df(z) ∧ df̄(z̄) = f ′(z)dz ∧ f ′(z)dz̄ = |f ′(z)|2dz ∧ dz̄ ,

proving the desired result.

Problem 8.3(3) The derivative there is

W ′(w) =
nwn−1(a0w

n + · · ·+ an−1w + 1)− wn(na0w
n−1 + . . . an−1)

(a0wn + · · ·+ an−1w + 1)2
→ 0 , (w → 0) ,

which is not onto, therefore∞ is not a regular point. As the pre-image of∞ for the polynomial
is p−1(∞) = {∞}, ∞ is not a regular value either.

Problem 8.3(4) The Brouwer degree is de�ned as an integral, so it is a continuous function
of ϵ for the deformed polynomial z → znϵ(an−1z

n−1 + · · · + a1z + a0). This degree takes the
value of degf at ϵ = 1, and degzn at ϵ = 0. The degree is also an integer, which can only be a
continuous function of ϵ ∈ [0, 1] is it is constant. The degree counts how many times a given
value is assumed, which for the case of 1 is the number of complex solutions of zn = 1, namely
z = ei2kπ/n, k = 0, 1, . . . , n− 1, i.e., n.

Problem 8.3(5) Suppose there was y ∈ V , such that ∄x ∈ M : F (x) = y. Due to the
continuity of F , there is also a neighbourhood of y which has no pre-image, so there are
also normalised volume forms on V that have a support in this neighbourhood. Calculating
the Brouwer degree of F with such a volume form would then yield 0, in contradiction with
degF ̸= 0.

Applying the result to a polynomial, it must be onto the Riemann sphere. This includes
that it also assumes the value 0.

Problem 8.3(6) P ′(z) =
∑

i(z − z1) . . . ̂(z − zi) . . . (z − zn), so P ′(zi) = z1 · · · ẑi · · · zn. If zi
is a multiple root, i.e., ∃j, zi = zj, then P

′(zi) = 0.

Problem 8.3(7) According to formula (8.20), the integral of the Gauss curvature, K, is the
degree of the normal vector �eld, as a map from the manifold to the 2-sphere. The degree is
als the number of pre-images of a given value, with sign according to orientation, as shown in
Theorem (8.17). Let us consider the normal at the �left� of �gure 8.7. That is assumed in each
hole, with a negative sign, and once on the left of the �gure, so the degree of the map is 1− g.
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Problem 8.3(8) The index is de�ned as the integral of the pull-back of the volume form,

indexv = V −1

∫
Sn

v∗irvol
n+1.

In the case of v(x) = x, the derivative is the identity, and the integral is just V , so indv = 1.
For the case of v(x) = −x, is the antipodal map, whose degree is (−1)n+1, as shown in the

solution of Problem 8.3(1).

Problem 8.3(9) Let the vector �eld v̂ = v/|v|, and using M = ∂U and Gauss' theorem,

indexv = V −1

∫
M

v̂∗vol = V −1

∫
U

dv̂∗vol = V −1

∫
U

v̂∗dvol = 0 .

Problem 8.3(10) The index, with normal pointing inward on the ∂Bα's would be the nega-
tive of that with the normal pointing out. The index on the surface consisting of M = ∂U and
the ∂Bα's with the normal pointing in is 0, as this surface is the boundary of U − ∪αBα.

Problem 8.3(11) Let v be such a vector �eld. If it never points to the center, then (1 −
ϵ)v+ϵN is a non-vanishing vector �eld, and so it has the same index for all ϵ. We may evaluate
it at ϵ = 0 getting the index of v, and at ϵ = 1, getting 1.

Problem 8.3(12) Let us consider the vector �eld v(x) = ϕ(x)−v, and assume that ϕ(x) ̸= x
for all x ∈ Bn+1. This is a vector �eld everywhere non-zero, so its index is 0 [it is also de�ned
on the interior, Problem 8.3(9)]. On the other hand, it also nowher points in the direction of
the outer normal, so −v never points to the center, so the index of −v is 1, the index of v is
thus (−1)n, which is a contradiction. Our assumption must be false, somewhere ϕ(x) = x, the
mapping has a �xed point.

Problem 8.3(13) The index of a unit vector �eld is computed as the pull-back of a normalised
volume form α on Sn, e.g., α = (An)

−1irvol
n+1

indexv =

∫
M

v∗β = (An)
−1

∫
M

v∗irvol
n+1 =

∫
M

voln+1

(
v,

∂v

∂u1
, . . . ,

∂v

∂un

)
du1 . . . dun ,

which is what we intended to proove. We have used that we need to evaluate irvol at r = v in
Sn, and v∗(∂/∂ui) = ∂v/∂ui.

Problem 8.3(14) Replace in the result of 8.3(13) v with v/∥v(u)∥. The derivatives become
∂v/∂ui /∥v(u)∥−v∂∥v(u)∥/∂ui/∥v(u)∥2, and the second term is proportional to v, so it drops
out due to the anti-symmetry of voln.

Problem 8.3(15) Let the unit vector �eld be

L =
r12
|r12|

All that is needed is to see that vol(r12, ∂r12/∂θ, ∂r12/∂ϕ) = −r12 × dr1/dθ · dr2/dϕ, and the
sign is absorbed into exchanging the second and the third vectors in the triple product.
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Problem 8.3(17) The interesecion number W 2 ◦ C2 is de�ned as the signed number of
intersections of a surface W 2 spanned by C1 (i.e., ∂W = C1) and C2.

Using the formula for the magnetic �eld of the current �owing around the curve C2, and
the result of Problem 8.3.(15), we see that the linking number is

Lk(C1, C2) = (4π)−1

∮
Bdr1 .

According to the Ampére-Maxwell law, the integral of the magnetic �eld around C1 is 4π times
the current �owing through the surface W , which is∫

W

j = W ◦ C2 ,

as the current is 1 in the curve, and it �ows through at each intersection.

Problem 8.4(1) (i) is simply using the linearity of an integral,

A(t) =

∫
∥xu(u, v; t)× xv(u, v, t)∥dudv =

∫
∥(1 + t)xu(u, v)× (1 + t)xv(u, v)dudv

= (1 + t)2
∫
∥xu(u, v)× xv(u, v)∥dudv = (1 + t)2A(0) .

(ii) Use the derivative of the previous one, dA(t)/dt = 2(1 + t)A(0), on the other hand,
in formula (8.23), the surface integral term vanishes (as the surface is a minimal surface), and
thus

A′(t) =

∮
C(t)

(
∂x(s, t)

∂s
×N

)
· x(s, t) = (1 + t)

∮
C

(N× x) · dx
dx

ds =

∮
c

det(N,x, dx) .

Equating A′(t) = 2(1 + t)A(0) and this expression yields what was to be proven.

Problem 8.5(1) Let us consider the derivative of the surface equation (8.30) w.r.t. uγ, yield-
ing

xαβγ = xγµΓ
µ
βα + xτ∂γΓ

τ
βα + ∂γbαβN+ bαβ∂γN ,

and use the surface eqs. (8.30) in the �rst and the Weingarten eqs. (8.5) in the last term,
resulting in

xαβγ = xτΓ
τ
γµΓ

µ
βα + Γµ

βαbµγN+ xτ∂γΓ
τ
βα + ∂γbαβN− xτbαβb

τ
γ .

Collecting the terms in xαβγ − xαγβ yields the de�nitions of Rτ
αβγ, U

τ
αβγ and Vαβγ.

According to Young's theorem, partial derivatives are symmetric in their indices, therefore,
R = U and V = 0 yielding the upper and the lower line of Eqs. (8.34), respectively.

Problem 8.5(2) The metric is, according to eq. (8.33), g11 = a2, g22 = a2 sin2 ϑ and g12 =
g21 = 0. This lets us compute the Christo�el symbols, of which the non-zero ones area

Γ1
22 = − sinϑ cosϑ , and Γ2

12 = Γ2
21 = cotϑ .

The desired component of the Riemann curvature tensor is R12
12 =

1
a2 sin2 ϑ

R1
212 with

R1
212 = ∂ϑΓ

1
22 − ∂φΓ1

12 + Γ1
11Γ

1
22 + Γ1

12Γ
2
22 − Γ1

21Γ
1
12 − Γ1

22Γ
2
12 ,

and substitution yields (from the �rst derivative and the last quadratic terms)

R1
212 = sin2 ϑ , so R12

12 = 1/a2 .
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Problem 8.7(1) The initial vector is X1(0) = 0, X2(0) = 1, and the tangent vector of the
curve is u1(t) = 1, u2(t) = 0. We need to compute the Christo�el symbols Γα

1β, the nonzero
ones are

Γ1
12 = −1/y , Γ2

11 = 1/(2y) , Γ2
22 = −1/y ,

so, the di�erential equations to solve are

dX1

dt
= −Γ1

11X
2 − Γ1

12X
2 = X2/y = X2 ,

dX2

dt
= −Γ2

11X
1 − Γ2

12X
2 = −X1/(2y) = −X1/2 .

or, re-written as a second order di�erential equation,

d2X1

dt2
= −X

1

2
,

which is the harmonic oscillator equation, using the initial conditions, we get

X1 = cos

(
t√
2

)
, X2 = − 1√

2
sin

(
t√
2

)
.

Problem 8.7(2) (i) As w is a unit vector, dw/ds is orthogonal to w. Now the covariant
derivative is the part of the derivative in the tangent plane,

∇w
dt

=
dw

dt
−N

(
N · dw

dt

)
,

and, as w is a vector tangent to the surface, it is also orthogonal to the normal vector N.
(ii) For simplicity sake, let us consider v a unit vector. As the

dθ

ds
=

d

ds
arccosv ·T = ∓ 1

sin θ

{(
∇v
ds
·T
)
+

(
v · ∇T

ds

)}
= ∓ 1

sinϑ
v · κg = ∓κg .

where we have used Eq. (8.44) and that v is parallel transported, so ∇v/ds = 0, and that κg

is orthogonal to T, as it only di�ers from κn by a term proportional to N, and it is in the
tangent plane, therefore if v ·T = cos θ, then v · κg = ±κg sin θ.

9 Covariant di�erentiation and curvature

Problem 9.1(1) In a coordinate frame,

(∇Yv)
i = Y ℓ(∂ℓv

i + ωi
ℓjv

j) ,

therefore

(∇X∇Yv)
i = XkY ℓ(∂k∂ℓv

i+∂kω
i
ℓjv

j+ωi
ℓj∂kv

j+ωi
kj∂ℓv

j+ωi
kmω

m
ℓjv

j)+(Xk∂kY
m)(∂mv

i+ωi
mℓv

ℓ) ,

and similarly, exchanging the roles of X and Y,

(∇Y∇Xv)
i = XkY ℓ(∂ℓ∂kv

i+∂ℓω
i
kjv

j+ωi
kj∂ℓv

j+ωi
ℓj∂kv

j+ωi
ℓmω

m
kjv

j)+(Y k∂kX
m)(∂mv

i+ωi
mℓv

ℓ) .
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The di�erence of the above two yields

∇X∇Yv −∇Y∇Xv = ∇[X,Y]v +R(X,Y)v ,

where the second derivatives drop out due to Young's theorem on the symmetry of partial
derivatives, the last terms yield the covariant derivative in the direction of the bracket of the
two vectors, as [X,Y]k = Xj∂jY

k − Y j∂jX
k, and the rest yields the curvature term with

Ri
jkℓ = ∂kω

i
ℓj − ∂ℓωi

kj + ωi
kmω

m
ℓj − ωi

ℓmω
m
kj .

Problem 9.1(2) The components of the vectors transform as, e.g., X ′i = J i
jX

j where
J i

j = ∂x′i/∂xj. A mixed tensor transforms as B′i
j = J i

kB
k
ℓ(J

−1)ℓj. Now

A′i
jkℓX

′kY ′ℓ = J i
m(J

−1)njA
m

nkℓX
kY ℓ

= A′i
jmnJ

m
kX

kJn
ℓY

ℓ ,

which holds for any X and Y, so

J i
m(J

−1)nkA
m

nkℓ = A′i
jmnJ

m
kJ

n
ℓ ,

or, equivalently,
A′i

jkℓ = J i
m(J

−1)nj(J
−1)ok(J

−1)pℓA
m

nop ,

which is the transformation rule of a rank 1-3 mixed tensor.

Problem 9.3(1) ∇e = e⊗ω (�matrix-tensor� product, e is a row vector of vector �elds, and
ω is a matrix of one-forms, the result is a row vector of vector valued one-forms). The second
exterior covariant derivative is now applied to this, using eq. (9.31'),

∇∇e = ∇(e⊗ ω) = (∇e)⊗ ω + e⊗ dω = (e⊗ ω)⊗∧ ω + e⊗ dω = e⊗ (ω ∧ ω + dω) = e⊗ θ .

We conclude that
θ = dω + ω ∧ ω ,

which is still a matrix-wedge product, written out as

θij = dωi
j + ωi

k ∧ ωk
j .

Furthermore, ωi
k = ωi

rjσ
r, so dωi

k = ∂sω
i
rjσ

s ∧ σr = (1/2)(∂rω
i
sj − ∂sω

i
rj)σ

s ∧ σr and
similarly ωi

k ∧ωk
j = ωi

rkω
k
sjσ

r ∧σs = (1/2)(ωi
rkω

k
sj−ωi

skω
k
rj)σ

r ∧σs, yielding dω+ω∧ω =
(1/2)Ri

jrsσ
r ∧ σs with

Ri
jkl = ∂kω

i
ℓj − ∂ℓωi

kj + ωi
ksω

s
ℓj − ωi

ℓsω
s
kj .

Problem 9.3(2)

∇(e⊗ σ) = (∇e)⊗ σ + e⊗ dσ = (e⊗ ω)⊗ σ + e⊗ (−ω ∧ σ + τ) = e⊗ τ .
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Problem 9.4(1) The connection form ω is de�ned as ∇e = eω, we have, from e′ = eP , that
∇e′ = ∇(eP ) = ∇eP + edP = eωP + edP = e′P−1ωP + e′P−1dP = e′ω′ yielding

ω′ = P−1ωP + P−1dP ,

which is Eq. (9.41). Using the de�nition of the curvature, θ = dω + ω ∧ ω,

dω′ = dP−1 ∧ ωP + P−1dωP − P−1ω ∧ dP + dP−1 ∧ dP ,

and

ω′ ∧ ω′ = P−1ωP ∧ P−1ωP + P−1dP ∧ P−1ωP + P−1ωP ∧ P−1dP + P−1dP ∧ P−1dP .

Let us now collect the terms,

P−1dωP + P−1ωP ∧ P−1ωP = P−1(dω + ω ∧ ω)P = P−1θP

and the remaining terms we use the fact that P−1P = I, therefore dP−1P + P−1dP = dI = 0,
so dP−1ωP = P−1dPωP , therefore dP−1∧ωP = −P−1dPP−1∧ωP cancelling the second term
from ω′ ∧ ω. The third term in dω′ ancels the third term in ω′ ∧ ω. Similarly, in the last term
of ω′ ∧ω′ we may replace P−1dP = −dP−1P yielding P−1dP ∧P−1dP = −dP−1P ∧P−1dP =
−dP−1 ∧ dP , which is cancelled by the last term of dω′. What remains is the terms we have
collected above,

θ′ = P−1θP ,

which is eq. (9.43) that was to be proven.

Problem 9.4(2) The transition matrix P is obtained as

P =

(
∂x
∂r

∂x
∂ϑ

∂y
∂r

∂y
∂ϑ

)
=

(
cosϑ −r sinϑ
sinϑ r cosϑ

)
=

(
cosϑ − sinϑ
sinϑ cosϑ

)(
1

r

)
.

The inverse is

P−1 =

(
1

1
r

)(
cosϑ sinϑ
− sinϑ cosϑ

)
=

(
cosϑ sinϑ
− sinϑ

r
cosϑ
r

)
.

Derivation yields

dP =

(
− sinϑdϑ −dr sinϑ− r cosϑdϑ
cosϑdϑ dr cosϑ− r sinϑdϑ

)
,

and so

ω′ = P−1dP =

(
0 −rdϑ
dϑ
r

dr
r

)
.

The curvature form is obtained as

θ′ = dω′ + ω′ ∧ ω′

is obtained from the terms

dω′ =

(
−1

− 1
r2

)
dr ∧ dϑ ,

and

ω′ ∧ ω′ =

(
−1

− 1
r2

)
dϑ ∧ dr ,

yielding θ′ = 0.
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Problem 9.4(3) Let us calculate ∇V αV = dαV + ωV ∧ αV = cV UdαU + dcV U ∧ αU +
(cV UωUcUV + cV UdcUV )∧ cV UαU , and using cV UcUV = idU∩V , dcV UcUV + cV UdcUV = 0, yielding
cV UdcUV = −dcV UcUV , or, cV UdcUV cV U = −dcV U

∇V αV = cV U(dαU+ωU∧αU)+dcV U∧αU+cV UdcUV ∧cV UαU = cV U(dαU+ωU∧αU) = cV U∇UαU .

Problem 9.5(1) Let us proceed analogously to the calculation in the text, i.e., let

ds2 =
1

y2
(dx2 + dy2) = (σ1)2 + (σ2)2 , σ2 =

dx

y
, σ2 =

dy

y
.

Again, ω12 = aσ1 + bσ2, and

dσ1 = −ω12 ∧ σ2 = −aσ1 ∧ σ2 ,

= d(dx/y) =
dx ∧ dy

y2
= σ1 ∧ σ2 ,

yielding a = −1, and, using ω21 = −ω12

dσ2 = ω12 ∧ σ1 = −bσ1 ∧ σ2 ,

= d(dy/y) = 0 ,

yielding b = 0, so ω12 = −σ1 = −dx/y. The curvature is obtained as θ12 = dω12 = d(−dx/y) =
−dx ∧ dy/y2 = −σ1 ∧ σ2. The Gauss-curvature is −1.

To use the formula, one must exchange 1 ↔ 2 in the text, and use u = y/x and v = log y
to get to a form ds2 = e−2vdu2 + dv2 = G2du2 + dv2. Using the formulae yields (change of
sign due to exchange of roles of u and v) ω12 = (Gv/G)σ

1 = −σ1 = −Gvdu = −dx/y and
θ12 = Gvvdu ∧ dv = Gvv/Gσ

1 ∧ σ2 = −du ∧ dv and K = −Guu/G = −1.

Problem 9.5(2) The position vector parameterised with x and φ is (x, f(x) cosφ, f(x) sinφ)T ,
a small change in x produces a displacement (dx, f ′(x) cosφdx, f ′(x) sinφdy) and one in φ,
(0,−f(x) sinφdφ, f(x) cosφdφ. The two are orthogonal, so Pythagoras' theorem yield

ds2 = (1 + f ′(x)2)dx2 + f(x)2dφ2 = (σ1)2 + (σ2)2 ,

where σ1 =
√
1 + (f ′)2dx and σ2 = fdφ. Again, writing the connection form as ω12 = aσ1+bσ2,

on one hand,
dσ1 = −ω12 ∧ σ2 = aσ1 ∧ σ2 ,

= d(
√

1 + (f ′)2dx) = 0 ,

yielding a = 0, and

dσ2 = −ω12 ∧ σ1 = ω12 ∧ σ1 = −bσ1 ∧ σ2 ,

= d(fdφ) = f ′(x)dx ∧ dφ =
f ′

f
√
1 + f ′2

σ1 ∧ σ2 ,

on the other, yielding b = −f ′/(f
√
1 + f ′2), and ω12 = f ′/f/

√
1 + f ′2σ2 = −(f ′/

√
1 + f ′2)dφ.

The curvature form is computed as

θ12 = dω12 = d

(
− f ′√

1 + f ′2
dφ

)
= − f ′′

(1 + f ′2)3/2
dx ∧ dφ = − f ′′

f(1 + f ′2)2
σ1 ∧ σ2 ,

yielding

K = − f ′′

f(1 + f ′2)2
.
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Problem 9.5(3) aijk = aikj = −akij = −akji = ajki = ajik = −aijk.

Problem 9.6(1) The vector was only parallel displaced along the curve, and does not neces-
sarily exist on the interior U . Even if it is extended into a vector �eld somehow, dvi + ωi

k = 0
on C only means that this form evaluated on the tangent vector of C vanishes. The form itself
is not zero in the interior, and that was used when going from the third line to the fourth,
replacing dvj by −ωj

kv
k.

10 Geodesics

Problem 10.1(1) The length of the curve is L(α) =
∫ L

0
⟨∂x/∂s, ∂x/∂s⟩1/2. The derivative is

thus

L′(α) =

∫ L

0

⟨∂x/∂s, ∂x/∂s⟩−1/2

〈
∂x

∂s
,
∇
∂α

(
∂x

∂s

)〉
.

Now we use Theorem (10.1) to exchange derivations by s and α, yielding

L′(α) =

∫ L

0

⟨∂x/∂s, ∂x/∂s⟩−1/2

〈
∂x

∂s
,
∇
∂s

(
∂x

∂α

)〉
.

Using
∂

∂s

〈
∂x

∂s
,
∂x

∂α

〉
=

〈
∇
∂s

∂x

∂s
,
∂x

∂α

〉
+

〈
∂x

∂s
,
∇
∂s

∂x

∂α

〉
,

we may express the RHS of L′(α) with the derivative of the scalar product, and the remaining
term from the RHS of the last equation. In the case of α = 0, the vector T = ∂x/∂s is a unit
tangent vector, so introducing the notation J = ∂x/∂α, we get

L′(0) =

∫ L

0

[
∂

∂s
⟨T,J⟩ −

〈
J,
∇T
∂s

〉]
ds = ⟨T,J⟩Q − ⟨T,J⟩P −

∫ L

0

〈
J,
∇T
∂s

〉
ds .

Problem 10.1(2) In Problem 9.5(1) we have calculated the connection and the curvature
forms, ω12 = −dx/y and θ12 = dω12 = d(−dx/y) = −dx ∧ dy/y2. The Gauss curvature is
K = −1.

A vertical geodesic has unit tangent vector T = e2 = y∂/∂y, so using the connection form
from Problem 9.5(1) we get

∇e2
ds

= ∇Te2 = ∇e2e2 = e1ω
1
2(e2) = y

∂

∂x

(
−dx

y

)(
y
∂

∂y

)
= 0 ,

proving that the vertical lines are geodesics. To verify that the vector J is a Jacobi vector, let
us write it as J = (1/y)e1, i.e., its x coodinate is J1 = 1/y and its y coordinate is J2 = 0. In 2d,
the Riemann tensor is characterised by a single entry, so the components of the Jacobi vector
must satisfy Eq. (10.7), and that the parallel component satis�ed d2J1/ds2 = 0. The other
component satis�es, on one hand, d2J1/ds2 = yd/dy(yd/dy(1/y)) = yd/dy(−1/y) = −1/y and
on the other hand KJ1 = −J1 = −1/y. Jacobi's equation holds.
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Problem 10.1(3) We have actually done this in the previous solution. The di�erential
equation is derived as follows:

d

ds
⟨J,T⟩ =

〈
∇J
ds

,T

〉
+

〈
J,
∇T
ds

〉
=

〈
∇J
ds

,T

〉
,

as T is the tangent of a geodesic. The second derivative is therefore, similarly,

d2

ds2
⟨J,T⟩ =

〈
∇2J

ds2
,T

〉
= −⟨R(J,T)(T),T⟩ = 0 ,

as the covariant Riemann tensor is skew symmetric in its �rst two indices, see Eq. (9.54).

Problem 10.3(1) The circle at polar agle ϑ is a circle in R3 of radius r = a sinϑ, therefore
L = 2πa sinϑ. Its geodesic radius is the length of the circle section from polar angle 0 to ϑ,
r = aθ, therefore

K = lim
r→0

3

πr3
(2πr − 2πa sinϑ) = lim

ϑ→0

3

πa3 sin3 ϑ
(2πaϑ− 2πa sinϑ) =

1

a2
,

where we have used the Taylor expansion sinϑ = ϑ− ϑ3/6 + . . . .

11 Relativity, tensors, and curvature

Problem 11.1(1) The covariant derivative is

∇J i

dt
=

dJ i

dt
+ Γi

jkT
jJk ,

and the vector T i has components approximately (1, 0, 0, 0), and J i is orthogonal to T i, therefore
J0 ≈ 0. What remains is ∇Jα/dt = dJα/dt + Γα

0βJ
β. The relevant Christo�el symbols are,

using gα0 = 0 [see eq. (11.1)],

Γα
0β =

1

2
gαγ
(
∂gγ0
∂xβ

+
∂g0γ
∂x0

− ∂g0β
xγ

)
= 0 .

Problem 11.1(2) The equation we need to verify is

∇2U =
1√
h

∂

∂xα

(√
hgαβ

∂U

∂xβ

)
,

where the determinant of the spatial metric is h = det(gαβ) = (1− 2m/r)−1r4 sin2 ϑ.
Of the gradient components, the derivative w.r.t. r is non-vanishing,

∂U

∂r
=

m

r2
√
1− 2m/r

,

yielding the only non-vanishing upper index component

grr
∂U

∂r
=
m

r2

√
1− 2m

r
,
√
hgrr

∂U

∂r
= m sinϑ ,

therefore

∇2U =
1√
h

∂

∂r

(√
hgrr

∂U

∂r

)
= 0 .
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Problem 11.2(1) The derivative is, of course, zero, so

δij/k = δmj Γ
i
km − δimΓm

kj = Γi
kj − Γi

kj = 0 .

Problem 11.2(2)

gij/k = ∂kgij − gmjΓ
m
ki − gimΓm

kj = ∂kgij − Γjki − Γikj = ∂jgij − Γjik − Γijk

where we have used (9.17) to exchange indices on the Christo�el symbols, and according to eq.
(8.32),

Γijk =
1

2
(∂kgij + ∂jgik − ∂igjk) ,

so exchanging indices i, j only exchanges the second and the third terms, which, therefore,
cancel when adding the original and the index-exchanged versions,

Γijk + Γjik = ∂kgij ,

cancelling the derivative term.

Problem 11.2(3) The Codazzi equations (8.34) are

∂γbαβ − Γτ
αγ = ∂βbαγ − Γτ

αβbτγ ,

and bαβ/γ = ∂γbαβ−Γτ
γαbτβ−Γτ

γβbατ , and bαγ/β = ∂βbαγ−Γτ
βαbτγ−Γτ

βγbατ . Using the symmetry
of the Christo�el symbols, in both covariant derivatives the last term is the same, and the �rst
and second terms are the ones in the Codazzi equations.

Problem 11.2(4) In solution 11.2(1) we have shown that the identity tensor is covariant
constant. Using the Leibniz rule and commutation with contraction,

0 = δik/r = (gijgjk)/r = gij/rgjk + gijgjk/r = gij/rgjk.

As gjk is invertible, gij/r = 0.

Problem 11.2(5) The mean curvature is de�ned as H = Tr b, where b is considered mixed,
H = gαβbαβ. The gradient vector is

(gradH)α = gαβ∂βb
γ
γ = gαβgγδbγδ/β

∗
= gαβgγδbγβ/δ = bγα/γ = (Div b)α ,

where in the equality marked with an ∗ we have used the Codazzi equations [see solution
11.2(3)].

Problem 11.2(6) Eq. (11.21), the second Bianchi identity, is

Ri
jkr/s +Ri

jsk/r +Ri
jrs/k = 0 .

Contracting indices i, k yields

Rjr/s −Rjs/r +Ri
jrs/i = 0 ,
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where we have used the antisymmetry of the Riemann tensor in its �rst two indices in the
second term. Now raising index j and contracting with r yields

R,s −Rj
s/j +Rij

js/i = 0 ,

In the third term, Rijjs/i = −Rji
js/i = −Ri

s/i, therefore

R,s = 2Ri
s/i ,

which is what was to be proven.

Problem 11.2(7) Let us calculate the covariant divergence of the tensor T ,

T ij
/j = ρ,ju

iuj + ρui/ju
j + ρuiuj/j + p,j(g

ij + uiuj) + pui/ju
j + puiuj/j ,

where we have taken into account that the metric is covariant constant. The �eld u is a 4-
velocity �eld, u2 = uiui = −1, therefore 0 = (uiui),j = 2ui/jui. Using this, one contraction
is

0 = uiT ij
/j = −ρ,juj − ρuj/j − puj/j ,

yielding the �rst equation,
(ρuj)/j = −puj/j ,

or equivalently, what was to be proven, div(ρu) = −p div u. The component orthogonal to ui

is obtained by multiplying with the projection operator g−1 + u⊗ u, yielding

ρui/ju
j + pui/ju

j + p,j(g
ij + uiuj) ,

which is equivalent to the second equation to be proven, (ρ+ p)ui/ju
j = −p,j(gij + uiuj).

Problem 11.2(8) In coordinates, one merely needs to consider

∇jak = ak,j + Γm
jkam ,

and the term drops out from the exterior derivative formula due to the symmetry of the con-
nection coe�cients in jk.

For the p-form, we refer to Sec. 4.2b: the value of a derivation or anti-derivation is de-
termined by its value on functions and one-forms, and on those, the formula with the covari-
ant derivative agrees with the original de�nition of the exterior derivative. All that needs
to be proven is that the expression here determines an antiderivation. That holds, because
if α = β ∧ γ then aK =

∑
L−→M−→

δLMK bLcM , so dαI =
∑

jK−→

∑
K−→L−→

δjKI δLMK (bL,jcM + bLcM,j) =∑
j L−→M−→

δjLMI (bL,jcM + bLcM,j) =
∑

j L−→M−→
δjLMI bL,jcM + (−1)p

∑
j L−→M−→

δLjMI bLcM,j.

Problem 11.3(1)

∇2xi = gjk
[
∂2xi

∂ujuk
− Γℓ

jk

∂xi

∂uℓ

]
is to be calculated. The equation is covariant to choosing the coordinates in the embedding R3,
therefore, we may choose them in such a way [see solution 8.1(5)], that x = u and y = v are the
direction of the principal curvatures, and z orthogonal to the surface, i.e., locally N = (0, 0, 1)T .
Also, in this point, the metric is the unit matrix, as b = diag(bu, bv), and the equation of the
surface is locally z = (buu

2+ bvv
2)/2, and the Christo�el symbols therefore vanish. The second

derivatives of x, y vanish, those equations hold. For the z coordinate, ∇2z = bu + bv = H.
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Problem 11.3(2) According to the previous exercise, HN = ∇2x on the surface, thus, using
Gauss' theorem ∫∫

M

HNdS =

∫∫
M

∇2xdS =

∫∫
∂M

∇xdS = 0 ,

as for a closed surface ∂M = ∅.

Problem 11.3(3) δ
√
−g = −(1/2)

√
−ggikδgik, therefore δLrm = −1/(8π)[FijFrsδg

irgjs +
FijFrsg

irδgjs − (1/2)FrsF
rsgikδg

ik]
√
−g = −1/(8π)[FirFk

r + FsiF
s
k − 1/2gikFrsF

rs]
√
−gδgik

yielding Tik as the coe�cient of −
√
−gδgik,

Tik =
1

4π

[
FirFj

r − 1

4
gijFrsF

rs

]
.

Problem 11.4(1) (i) just consider a neighbourhood where x1, . . . , xn are coordinates, and
locally V agrees with xn = 0, and extend the vectort �elds with the coordinates depending
only on x1, . . . , xn−1, and the nth one being zero. As M is a Riemannian manifold with its
Levi-Civitá covariant derivative,

∇XY −∇YX = [X,Y] .

On the other hand, ∇V
XY = ∇XY− ⟨∇XY,N⟩N, where N is the unit normal. All we need to

whow is that when replacing ∇ with ∇V in the equation above expressing the torsionlessness
of ∇, the normal terms drop out,

⟨∇XY,N⟩ = ⟨∇YX,N⟩

which we can do in coordinates, N i = δin, and X
i
/j = ∂jX

i + Γi
jkX

k, therefore

⟨∇XY,N⟩ = Γn
jkX

jY k ,

using Xn = 0 which is a symmetrix expression in X and Y for the connection of a Riemannian
manifold M .

(ii) is even simpler, just replace∇XY = ∇V
XY+⟨∇XY,N⟩N, and the same way forX↔ Y,

and note that ⟨N,Y⟩ = 0 = ⟨N,X⟩. As the de�nition of the Levi-Civitá connection is that it
is the unique mtric compatible torsionless connection (i.e., the one for property (ii) holds), ∇V

is the Levi-Civitá connection of V .

Problem 11.4(2) (i) The paper is �at, its Gauss curvature vanishes. Folding it means
changing its embedding into 3-space, but the Gauss curvature remains the same. At the crease,
one of the principal curvatures diverges, so the other must be zero.

The two principal curvatures are orthogonal. The zero curvature belongs to the direction
along the crease, i.e., that is a straight line.

(ii) If you consider folding the paper in a way that you hold the points along the crease �xed
and moving the two halves of the rest of the paper towards each other, then you see that the
crease is the �xed set of an isometry, i.e., it is totally geodesic. Geodesics on the plane (paper)
are straight lines.
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Problem 11.5(1) As hinted, ∂t(E ∧ ∗E) = 2E ∧ ∂ ∗ E/∂t = 2E ∧ (d ∗ B − 4πj) using the
Ampére-Maxwell law, and similarly, ∂t(B ∧ ∗B) = 2∂B/∂t ∧ ∗B = (−dE) ∧ ∗B, using the
Maxwell-Faraday equation, yielding

d

dt

1

8π

∫
U

[E ∧ ∗E + B ∧ ∗B] =
1

4π

∫
U

[E ∧ (d ∗ B − 4πj)− (dE) ∧ B] ,

=
1

4π

∫
U

[−d(E ∧ ∗B)− 4πE ∧ j] ,

= − 1

4π

∫
∂U

E ∧ ∗B −
∫
U

E ∧ j .

Problem 11.5(2) According to eq. (11.81), ∂hαβ/∂t = −2bαβϕ. Furthermore, ∂
√

dethαβ/∂t =

1/2× 1/
√

dethαβh
αβ∂hαβ/∂t and Trhb = H, yielding the desired result.

As for the missing of the boundary term: when taking the derivative d/dt
∫
V (t)

dSn−1, and

only considering the derivative of the measure (or integrand), the surface term should have
been included in addition. The assumption not to include it here is equivalent to assume that
either there is no boundary of it is �xed.

Problem 11.5(3) Let us write the cyclic Bianchi identities in the form

Riℓjk +Rijkℓ +Rikℓj = 0 ,

and add the three remaining cyclic permutations (i.e., Rℓjki + · · · = 0, Rjkiℓ + · · · = 0, . . . ).
The result, using the antisymmetry in both pairs of indices, is

2Rijkℓ + 2Rℓkij = 0 ,

or, equivalently, Rijkℓ = Rkℓij.

Problem 11.5(4) The Codazzi equations (11.61) read

⟨R(X,Y)Z,N⟩ = (∇V
XB)(Y,Z)− (∇V

YB)(X,Z) .

Using (−g00)1/2N = ∂t, and X = ∂γ, Y = ∂α and Z = ∂β, yields

(−g00)−1/2R0γαβ = bαβ//γ − bγβ//α ,

which is what was to be proven.

12 Curvature and topology: Synge's theorem

Problem 12.1(1) ⟨K, R(J,T)T⟩ = KaRabcdT
bJ cT d = J cRcdabT

dKaT b = JaRabcT
bKcT d by

relabeling indices, which is ⟨J, R(K,T)T⟩.
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Problem 12.2(1) LetM2n+1 be a compact, odd-dimensional manifold with positive sectional
curvatures, and let us assume that M is not orientable. If it is not orientable, there must be a
closed curve C, transporting an orientation along which it is reversed. Consequently, there is a
geodesic Cg freely homotopic to C, and, as a sign can only depend continuously on a parameter
if it is constant, orientation is reversed when transporting along Cg. Therefore, Cg cannot
be contracted to a point, it must be of minimal length. A vector orthogonal to the tangent
vector of the curve can be parallel transported along the curve to yield an orthogonal variation
J. According to Corollary (12.6), for such a variation, L′′(0) = −

∫
Cg
⟨R(J,T)T,J⟩ds < 0, in

contradiction with its length being minimal.

13 Betti numbers and De Rham's theorem

Problem 13.3(1) We use the notations of Fig. 13.20. As RP 3 is connected, H0(RP 3,Z) = Z.
The curve A is a 1-cycle, and the boundary of the 2-chain B is 2A, so

H1(RP 3,Z) = ZA/(2ZA) = Z2 .

As ∂B = 2A, B is not a 2-cycle, so

H2(RP 3,Z) = 0 .

The boundary of the full space is 0, just as in the real case, as ∂RP 3 = B − B = 0, i.e., it
is orientable, so

H3(RP 3,Z) = Z .

Problem 13.3(2) As it is a connected surface,

H0(M
2,R) = R , H0(M

2,Z) = Z .

For any 1-cycle, we may pull it out to the boundary, so 1-cycles are of the form αA + βB +
γC + δD. On the other hand, ∂M = A+B − A+B + C +D − C −D = 2B, so

H1(M,R) = (RA+ RB + RC + RD)/(2RB) = R3 ,

and
H1(M,Z) = (ZA+ ZB + ZC + ZD)/(2ZB) = Z3 × Z2 .

As the boundary of M is non-zero, it does not de�ne a cycle,

H2(M,R) = 0 , H2(M,R) = 0 ,

and so it is non-orientable. The Betti numbers are de�ned as bn = dimHn(M,R), yielding

b0 = 1 , b1 = 3 , b2 = 0 .

Note: the surface M can be constructed as follows. If we consider the right half of the
octagon, that is a square with one of its corners �cut o��, and it has AB(−A)B on its edges,
just as the Klein bottle. The left half has CD(−C)(−D), which is a torus. Gluing them
together yield a torus glued to a Klein bottle, which is non-orientable.
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Problem 13.4(1) (i) Let us consider the pull-back of the closed form dϑ ∧ dφ with the
mapping F . Locally that is

F ∗(dϑ ∧ dφ) = d(ϑ ◦ F ) ∧ d(φ ◦ F ) ,

which is again a closed form. On the sphere, as its 1st Betti number vanishes, every closed
1-form is exact, i.e., there are functions ϑ′ and φ′ such that d(ϑ ◦F ) = dϑ′ and d(φ ◦F ) = dφ′.
Consequently, the form F ∗(dϑ ∧ dφ) is exact, e.g., it is = d(ϑ′dφ′). Consequently,

degF =

∫
S2 F

∗(dϑ ∧ dφ)∫
T 2 dϑ ∧ dφ

= 0 .

(ii) Using the results from above, a condition on M would be that its �rst Betti number
shall vanish, b1(M) = 0.

14 Harmonic forms

Problem 14.1(1) We wish to prove

∗(∗αp) =

{
(−1)p(n−p)α , if M is Riemannian ,

− (−1)p(n−p)α , if M is pseudo-Riemannian .

The proof is as follows: according to eq. (14.3),

∗α J−→
=
√
|g|αKϵK−→ J−→

,

so
(∗(∗α))L−→ =

√
|g|(∗α)Jϵ J−→L−→

= |g|αKϵK−→
J−→ϵ J−→L−→

= |g|αKϵ
K−→ J−→ϵ J−→L−→

,

where indices have been pulled up with the metric (and only using the de�nition of the lower
index ϵ from sec. 2.5b). Now we take into account the de�nition of ϵ,

ϵI = δ1,2,...,nI ,

which we can use to rewrite the sums, so

ϵK−→ J−→ = gk1,ℓ1 · · · gkp,ℓn−pgj1ℓn−p+1 · · · gjpℓnδ1,2,...,nℓ1,...,ℓn−p
−−−−−−−→

ℓn−p+1...ℓn
−−−−−−−−→

= |g−1|ϵK−→ J−→
,

and
ϵK−→ J−→

ϵ J−→L−→
= δ1,2,...,nK−→ J−→

δ1,2,...,nJ−→L−→
= (−1)p(n−p)δ1,2,...,nJ−→K−→

δ1,2,...,nJ−→L−→
,

as to restore the original order of indices, all elements of K have to be exchanged with all
elements of J , and in the last term, the both δ's can be ±1 only if K = L, therefore

∗(∗α) = |g||g−1|(−1)p(n−p)α ,

and |g||g−1| =
∏

j signλj(g), the product of the signs of the eigenvalues of the metric, giving 1
in the Riemannian, and -1 in the pseudo-Riemannian case.
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Problem 14.1(2)

βjK
/j = ∂jβ

jK + Γj
jℓβ

ℓK + Γk1
jℓβ

jℓk1,...,kp−1 + · · ·+ Γkm
jℓ β

jk1,..., ̸km,...,kp + . . . ,

and as the Levi-Civitá connection Γi
jk of a Riemannian manifold is symmetric in the lower

indices (it is torsionless), all terms vanish except the �rst two,

βjK
/j = ∂jβ

jK + Γj
jℓβ

ℓK .

As this is the same formula as for the divergence of a vector, we may use eq. (11.27) to complete
the proof.

Problem 14.1(3) Let us consider

(f,∇2g) = −(f, d∗df) = −(df, dg) +
∫
∂M

f ∗ dg ,

where in the �rst equality we have used the de�nition of d∗, eq. (14.11), and in the second one,
eq. (14.14). Writing out (g,∇2f) in the same way, and taking the di�erence yields the result
to be proven.

Problem 14.1(4) Eq. (14.17) says ∫
Z

S3 = 0 ,

where S = σ3 − j2 ∧ dt. As the integral of S3 vanishes over any 3-cycle Z, it also vanishes on
the boundary of the cylinder Z = ∂{V 3 × [0, T ]} mentioned in the text. This integral is

0 =

∫
∂(V 3×[0,T ])

S =

∫
V 3×[0,T ]

dS ,

and dS = d(σ − j ∧ dt) = dσ − dj ∧ dt. Now d = d+ dt ∧ ∂/∂t, yielding

0 =

∫
V 3×[0,T ]

dσ + dt ∧ ∂σ
∂t
− dj ∧ dt =

∫
V 3×[0,T ]

dt ∧
(
∂σ

∂t
+ dj

)
,

as the �rst term vanishes when inserting ∂t. The last integral must vanish when integrated over
any cylindrical domanin, therefore, it must vanish. In the brackets, we have the expression of
charge conservation already known, eq. (3.32).

Problem 14.2(1) (1) d∗f 0 = ∗d ∗ f 0, and ∗f 0 = f 0vol is a maximal form, so d ∗ f 0 = 0.
(2) d∗α1 = − ∗ d ∗ α, and ∗α = iAvol, so d ∗ α = (divA)vol, so dα = −((divA)) ∗ vol, and

vol = ∗1, so ∗vol = ∗ ∗ 1 = 1, yielding d∗α1 = − divA. [Or see Theorem (14.15).]
(3) d∗β2 = d∗iBvol = ∗d ∗ iBvol = ∗d ∗ ∗β1 = ∗dβ1 = ∗icurlBvol.
(4) d∗γ3 = −∗d∗γ3. Any 3-form γ3 can be written as γ3 = g0vol3 = ∗g0, so ∗γ3 = ∗∗g0 = g0,

so d∗γ3 = − ∗ dg0 = −igrad g0vol
3.

(5) △f 0 = (dd∗ + d∗d)f 0, and d∗f 0 = ∗d ∗ f 0 = 0 [see (1)], so △f 0 = d∗df . The vector
corresponding to df is grad f , so △f = d∗df = − div grad f = −∇2f .
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(6) △α1 = (dd∗ + d∗d)α, and dα = icurlAvol, d
∗dα = d∗icurlAvol = ∗icurl curlAvol, and

d∗α = − divA [see (2)], so dd∗α = −d divA is the 1-form corresponding to − grad divA,
yielding △A = curl curlA− grad divA.

(7) △β2 = (dd∗ + d∗d)β2, and d∗β2 = ∗icurlBvol, the 1-form version of the curl, and
so dd∗β = icurl curlBvol, and dβ2 = ∗(divB), and so d∗dβ = −igrad divBvol, again yielding
△B = curl curlB− grad divB.

(8) △(∗f 0) = △f 0vol = dd∗f 0vol = −digrad fvol = (div grad f)vol = −∇2fvol = −∗ (∇2f).

Problem 14.2(2) d△ = d(dd∗ + d∗d) = (dd∗)d = (dd∗ + d∗d)d = △d, where we have used
d2 = 0. Similarly d∗△ = d∗(dd∗ + d∗d) = d∗dd∗ = (d∗d + dd∗)d∗ = △d∗, where we have
used (d∗)2 = 0. The commutativity with the Hodge star is as follows △∗ = (dd∗ + d∗d)∗ =
(−1)n(p+1)+s(d ∗d ∗+ ∗d ∗d)∗ = (−1)n(p+1)+s((−1)p(n−p)+s ∗ ∗d ∗d ∗+ ∗d ∗d)∗ = (−1)n(p+1)+s ∗
((−1)p(n−p)+s ∗ d ∗ d ∗ ∗+ d ∗ d∗) = (−1)n(p+1)+s ∗ (∗d ∗ d + d ∗ d∗) = ∗(d∗d + dd∗) = ∗△.

Problem 14.2(3) According to Corollary (14.32), in each de Rham class of closed p-forms,
there is a unique harmonic form. According to de Rham's theorem (13.32), the equivalence
classes of the closed p-forms form the dual space of the homology group Hp(M,R), do the
dimensionality of the space of classes is also bp. The Hodge duality associates to each p-form a
pseudo n − p-form. On an orientable manifold, one may choose an orientation, and the form
corresponding to the pseudo-form and that orientation, thus having a mappint from Hp to
Hn−p, which is bijective, thus the two spaces are isomorphic, bp = bn−p.

In the case of the torus, as expected, b0 = b2 = 1. The Klein bottle is not orientable, so we
do not expect equality, and so it is, b0 = 1, b2 = 0 (see Sec. 13.3b).

Problem 14.3(1) Let the currents through the holes be I1, . . . , Ig. The �rst homology
group of M is spanned by curves ci around the holes inside M . According to Ampére's law,∫
ci
∗B = 4πIi, i.e., the currents determine the the periods of ∗B. Inside M , d ∗ B = 0 (no

currents), and dB = 0, so ∗B is a harmonic two-form (d∗ ∗B = ∗d ∗ ∗B = − ∗ dB = 0), and,
as B is normal to the surface, ∗B is tangential, therefore, Hodge's theorem for tangential forms
(14.34) may be used.

Problem 14.3(2) Let α be a tangent form. Choosing coordiantes x1, . . . , xn in a neighbour-
hood of ∂M such that ∂M agrees locally with xn = 0, the form being tangent is equivalent to
the existence of a form γ such that (locally) α = dxn∧ γ. In this case, dα = d2xn−dxn∧dα =
−dxn ∧ dα, as d2 = 0, yielding that dα is normal.

A form β is tangential if ∗β is normal. Now d∗β = ∓(−1)n(p+1) ∗ d ∗ β, and so if ∗β is
normal, so is d ∗ β as shown above, and, consequently, ∗d∗β is tangential.

Problem 14.3(3) Using eq. (14.14),

(dαp−1, βp)− (αp−1, d∗βp) =

∫
∂M

αp−1 ∧ ∗βp .

If α is normal, β is harmonic, then the second and the third terms vanish (as d∗β = 0 and
i∗α = 0), therefore so must the �rst one, which proves orthogonality of the �rst and the third
sets.
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Figure 14.14 in four copies (left), and a zoom in on the central point

If β is tangent, and α is harmonic, then the �rst and the third terms vanish (as nor dα = 0
and as ∗β is normal, i∗ ∗ β = 0), therefore so must the second one, proving the orthogonality
of the second and third sets.

If α is normal and β is tangential, then

(dαp−1, d∗βp+1) = (dα, d∗β)− (α, (d∗)2β) =

∫
∂M

α ∧ ∗d∗β = 0 ,

as (d∗)2 = 0 and α is normal, therefore i∗α = 0.

Problem 14.3(4) We have redrawn Fig. 14.13 in four copies. Also, we have zoomed in on
the corner, and drawn three directions in which the function decreases (as they connect points
on the level set 0 ans -1) with thick black arrows pointing outwards, and the three directions
separating these with dashed lines with arrows pointing inwards.

The two independent 1-cycles can be constructed as follows: one moves in along one of the
decreasing directions, and out along another one. There are three such 1-cycles, but they are
not independent, but any two of them are.

Problem 14.3(5) Let us consider

M(t)− P (t) = · · ·+ (mλ−1 − bλ−1)t
λ−1 + (mλ − bλ)tλ + (mλ+1 − bλ+1)t

λ+1 + . . .

= −bλ−1t
λ−1 + (mλ − bλ)tλ − bλ+1t

λ+1 + . . .

= · · ·+ (qλ−1 + qλ−2)t
λ−1 + (qλ + qλ−1)t

λ + (qλ+1 + qλ)t
λ+1 + · · · = (1 + t)Q(t) ,

where Q(t) =
∑

λ qλt
λ, with qλ ≥ 0. As all coe�cients are non-negative in the last line, therefore

0 = bλ−1 = bλ+1 must hold, so

0 = mλ−1 − bλ−1 = (qλ−1 + qλ−2) ≥ 0 ,

mλ − bλ = (qλ + qλ−1) ≥ 0 ,

0 = mλ+1 − bλ+1 = (qλ+1 + qλ) ≥ 0

43



must hold too. This is only possible if qλ,λ±1 = 0, yielding mλ = bλ.

3 Lie groups, bundles, and Chern forms

15 Lie groups

Problem 15.1(1) The right-invariant �eldX andY must satisfyXe = ∂/∂x andYe = ∂/∂y,
and be right-invariant, that is Rg∗Xh = Xhg (and the same forY), or, similarly to the treatment
of the left-invariant �elds in the book, Xg = Rg∗Xe. This, as for the left-invariant �elds, is
obtained by multiplying its matrix at the origin with the group element, but now from the
right, so

Xg = Rg∗
∂

∂x
=

d

dt

(
1 + t 0
0 1

)(
x y
0 1

)∣∣∣∣
t=0

=

(
x y
0 0

)
= x

∂

∂x
+ y

∂x

∂y
,

and similarly, Yg = ∂/∂y. The dual right invariant forms satisfy σ1(X) = 1, σ1(Y) = 0,
σ2(X) = 0 and σ2(Y) = 1. This is satis�ed by σ1 = dx/x and σ2 = −ydx/x + dy. The
right-invariant volume form is σ1 ∧ σ2 = dx ∧ dy/x.

Problem 15.1(2) (i) for any g ∈ G, g is a function g : R4 → R4, x 7→ gx (the linear action).
The di�erential maps a TxR4 ≡ R4 to TgxR4. The mapping is constructed, e.g., as considering
a curve γ(t) derivative at t = 0 is a given vector, γ(0) = x, γ̇(0) = v, e.g., γ(t) = x + vt. The
image of the vector is g∗v = d/dt(gγ(t))|t=0 = gv, whose matrix is g, so det g∗ = det g = 1.
This shows that it preserves the eucludean volume form: let Ti, i = 1, . . . , 4 be left-invariant
vector �elds, so (g∗volgx)(T1x, . . . ,T4x) = volgx(g∗T1x, . . . , g∗T4x) = volgx(T1gx, . . . ,T4gx). On
one hand, the euclidean volume does not depend on the point where it is evaluated, volgx = vol.
On the other, volgx(g∗T1x, . . . , g∗T4x) = (det g)vol(T1x, . . . ,T4x) = vol(T1x, . . . ,T4x), which,
compared with the �rst expression, yields g∗vol = vol.

(ii) The group is the manifold {x| detx = 1}, so the tangent space is the dH = 0, where
dH(h) = (det x) Tr(x−1h), therefore

TxSl(2,R) = {h ∈ R4|Tr x−1h = 0} .

Calculating the inverse of the matrix using Cramer's rule, and using detx = 1 yields

(x−1)i = (−1)
(i−1)(4−i)

2 xi ,

and so the tangent space is ∑
i

(−1)
(i−1)(4−i)

2 xidxi = 0 ,

which may be used to express x4dx4 = −
∑3

i=1(−1)(i−1)(4−i)/2xidxi.
The di�erential of the determinant function is

dH = (detx)(x−1)idxi ,

therefore the gradient vector is

(∇H)i = (detx)
∑
i

(−1)
(i−1)(4−i)

2 xi , ∥∇H∥2 = (detx)2∥x∥2 .
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The euclidean volume form is vol = dx1∧dx2∧dx3∧dx4, and we shall insert here the gradient
vector,

σ = i∇H/∥∇H∥2vol

yielding

σ =
x1

∥x∥2
dx2 ∧ dx3 ∧ dx4 + x2

∥x∥2
dx1 ∧ dx3 ∧ dx4− x3

∥x∥2
dx1 ∧ dx2 ∧ dx4− x4

∥x∥2
dx1 ∧ dx2 ∧ dx3

and we may express now dx4 with the rest, and only the independent one contributes,

σ = dx1 ∧ dx2 ∧ dx3
(
− (x1)2

x4∥x∥2
− (x2)2

x4∥x∥2
− (x3)2

x4∥x∥2
− x4

∥x∥2

)
= − x1

1 + x2x3
dx1 ∧ dx2 ∧ dx3 .

We may, of course, �ip the orientation.

Problem 15.2(1) Let us use the series of expx,

exp θJ =
∑
n

1

n!
(θJ)n ,

and replace (θJ)n = θnJn, and take into account J2 = −I, separate n = 2k and n = 2k + 1,
yielding

exp θJ =
∑
k

1

(2k)!
(−1)kθ2kI +

∑
k

1

(2k + 1)!
(−1)kθ2k+1J = (cos θ)I + (sin θ)J ,

where we have recognised the power series of the sine and cosine functions.

Problem 15.2(2) Let us �rst show (by induction) that(
a b
0 0

)n

=

(
an an−1

0 0

)
for n ≥ 1. Then

exp t

(
a b
0 0

)
= I +

∞∑
n=1

tn

n!

(
an (a)n−1b
0 0

)
,

and the sums are

1 +
∞∑
n=1

(ta)n/n! =
∞∑
n=0

= exp(ta)

and
∞∑
n=1

tnan−1b/n! = (b/a)
∞∑
n=1

(ta)n/n! = b/a(exp(at)− 1)

yielding

exp t

(
a b
0 0

)
=

(
exp(at) b

a
(exp(at)− 1)

0 1

)
.
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Problem 15.2(3) The convergence radius of the series of the exponential is in�nite, therefore,
we may di�erentiate term by term.

exp[B(t)] =
∑
n

B(t)n

n!
,

and d/dtB(t)n = B′(t)B(t)n−1 +B(t)B′(t)B(t)n−2 + · · · = nA(t)B(t)n−1, therefore

d

dt
exp[B(t)] =

∑
n

1

n!
nA(t)B(t)n−1 = A(t)

∑
n

B(t)n−1

(n− 1)!
= A(t) exp[B(t)] ,

which completes the proof.

Problem 15.3(1) We start by choosing a set of left-invariant vector �elds XR, R = 1, 2, . . . ,
dimG, de�ning the structure constants by [XR,XS] = XTC

T
RS. The dual basis of one-forms,

de�ned by σU(XS) = δUS is also left-invariant, therefore, as in eq. (15.22),

dσU(XR,XS) = −σU([XR,XS]) = −σU(XTC
T
RS) = −CU

RS = −
∑
U<V

CU
UV σ

U ∧ σV (XR,XS)

for any two basis vector �elds XR,XS, therefore, the two forms must agree,

dσU = −
∑
R<S

CU
RSσ

R ∧ σS = −1

2

∑
R,S

CU
RSσ

R ∧ σS .

The Jacobi identity on the structure constants is proved as dollows: as ddσU = 0, so using
eq. (4.27) yields

0 = d(dσU)(XL,XM ,XS) = XL(dσ
U(XM ,XS))−XM(dσU(XL,XS)) +XS(dσ

U(XL,XM))

− dσU([XL,XM ],XS) + dσU([XL,XS],XM)− dσU([XM ,XS],XL) ,

and the terms in the �rst row are 0 (as they are derivatives of the structure constants along
the vectors). In the second row, we write [XL,XS] = XTC

T
RS, and so on, yielding

CU
RSC

R
LM + CU

RMC
R
SL + CU

RLC
R
MS = 0 .

Problem 15.3(2) As A2 = −ρI, the series of the exponential can be separated into odd and
even terms as

eA =
∞∑
n=0

An

n!
=

∞∑
k=0

(−1)kρk

(2k + 1)!
A+

∞∑
k=0

(−1)kρk

(2k)!
I ,

where we may replace ρk = (sign ρ)k
√
ρ sign ρ

2k
, thereby obtaining the desired result.

As A is zero trace,

Tr eA =


2 cos

√
ρ , if ρ > 0

2 cosh
√
|ρ| , if ρ < 0

2 , if ρ = 0

which also yields Tr eA ≥ −2. The matrix g above has Tr g = −3/2, therefore it cannot be of
the form eA for a traceless A.
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Problem 15.3(3) (i) For any element g ∈ Sl(n,R) its columns v1, . . . ,vn ∈ Rn are n linearly
independent numbers. Let us consider their Gram-Schmidt orthogonalisation e1, . . . , en, and
the vectors wk = tek + (1 − t)vk, which agree with k for t = 0, and with ek for t = 1. This
shows that SO(n) is a deformation retract of Sl(n,R). As the latter is connected [see Theorem
(15.5)], so is the former.

(ii) As the group is a deformation retract of SO(3), their homology groups agree. The latter
is a ball in the space if 3×3 real matrices with the opposite points on its boundary identi�ed, i.e,
the real projective space RP 3. That has (see Sec. 13.3b) H0(Sl(3,R),R) = R = H3(Sl(3,R),R),
and all others 0, and from Problem 13.3(1), H0(Sl(3,Z),R) = Z, H1(Sl(3,Z),R) = Z/2Z = Z2,
H2(Sl(3,Z),R) = 0 and H3(Sl(3,Z),R) = Z and all others 0.

(iii) The general linear group contains all matrices with a non-zero determinant. As the
determinant is a polynomial, therefore, a continuous function of the matrix, the pre-image
of a non-connected set R+ ∪ R− cannot be connected. At the same time, for all matrices
M ∈ Gl(n,R) we may introduceM(t) = (1−t)M+tM/ n

√
| detM | which connects it withM(1)

having detM(1) = ±1. This shows that Gl(n,R) has a deformation retract {±1}Sl(n,R), and
so {±1}SO(n) = O(n). As a result, ist homology groups are the direct sum of those of O(n)
with themselves.

Problem 15.4(1) We use eq. (15.33),

[X,Y] = lim
t→0

exp(tX) exp(tY) exp(−tX) exp(−tY)− I
t2

,

and (15.17), expS =
∑

n S
n/n!. We expand all exponentials to second order, yielding

[X,Y] = lim
t→0

(
I + tX + t2X2

2

)(
I + tY + t2Y 2

2

)(
I − tX + t2X2

2

)(
I − tY + t2Y 2

2

)
− I

t2

= XY − Y X .

Problem 15.4(2) Let h in the leaf H. Again, by the de�nition of ∆, left translation of H
by h−1 sends the lead into another, perhaps di�erent, leaf h−1H. On the other hand, h ∈ H
and so e = h−1h ∈ h−1H, i.e., the two leaves both contain e, therefore, they must coincide.

Problem 15.4(3) To show that it is a subalgebra, consider

[A,B]† = (AB −BA)† = B†A† − A†B† = (−B)(−A)− (−A)(−B)

= BA− AB = −(AB −BA) = −[A,B] ,

i.e., it is skew Hermitean, and

Tr[A,B] = Tr(AB −BA) = Tr(AB)− Tr(BA) = 0 ,

as the trace is invariant to cyclic permutations. In Sec. 15.3c, it was shown that su(n), the
Lie-algebra of SU(n) is the set of all skew Hermitean matrices.

In the case of Hermitean matrices, similar calculation yields

[A,B]† = (AB −BA)† = B†A† − A†B† = −(AB −BA) = −[A,B] ,

i.e., that the anticommutator is a skew Hermitean matrix, so their set does not form a Lie-
algebra, therefore, there is no subgroup of Sl(n,C) whose Lie-algebra is the space of Hermitean
matrices.
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16 Vector bundles in geometry and physics

Problem 16.1(1) It can be de�ned in one local trivialisation. What needs to be shown is
that this is global: if ψU = 0

ψV (p) = cV U(p)ψU(p) = 0 ,

as the transition is linear.

Problem 16.1(2) If the bundle was trivial, one could specify a transportation of a frame
e1,2(p) in the normal bundle along the curve. As the tangent vector of the curve is e3, constant,
there is a two-component matrix function M(t) such that e(p(t)) = e(p(0))M(t).

The frame e0M(1) at the north pole is identi�ed with −e0M(1) at the south pole, only pos-
sible if detM(1) = −1. A continuous deformation is allowed (as in the proof of the triviality
of the normal bundle of a closed curve in Euclidean 3-space in the book), but the determi-
nant of an orthonormal matrix is either + or -1, so it cannot change continuously. This is a
contradiction, so the bundle is non-trivial.

Problem 16.1(3) The normal bundle is a one-dimensional line bundle. If we take a line
connecting two antipodal points, choose a vector at one point, it is identi�ed with the opposite
one at the antipodal point. Its single component therefore must vanish somewhere, therefore,
the bundle is non-trivial, as there is not a single non-zero global section.

Problem 16.1(4) In the orientable case, the same argument may be used as in R3, trans-
porting a frame along the curve, and if necessary, continuously deforming it in the last short
part to match the original frame at 0 parameter value. This is possible as the frame together
with the tangent vector speci�es an orientation, and that must be the same as the one at 0
parameter value, therefore, the transported vectors are related to the original ones with an
orientation-preserving transformation. Therefore, the normal bundle in this case is trivial.

In the non-orientable case, if M is such a curve that an orientation cannot be transported
along the curve, then assuming the existence of such a frame would result in the transportation
of an orientation (as the tangent vector is preserved), resulting in a contradiction. Therefore,
in this case, the normal bundle is not trivial.

Problem 16.2(1) The height vector �eld has one minimum at the point where the surface
touches the table, one maximum at the top, and 2g saddle points. Around the maximum and
the minimum, the surface is can be parametrised locally as z = ±(x2 + y2), therefore vector
�eld locally looks like the vector �eld 2x and −2x on R2 near the origin, therefore its index at
both these points is 1. At the saddle points, the surface locally looks like the z = ±(x2 − y2),
therefore the vector �eld locally looks like ±(2x,−2y), which has index -1, therefore, adding
the indices together, the desired result is proven.

Problem 16.2(2) The index of the critical points is 0, 1, and 2, in the order as above. The
Morse indices are m0 = m, m1 = s, and m2 =M , where m, s, and M are the numbers of local
minima, saddle points, and local maxima.

The pits-passes+peaks theorem yields (by using a triangulation �tted to the function) that
there is a vertex for each maximum, a saddle point for each edge, and a face for each minimum,
yielding χ = b0 − b1 + b2.
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As the index of the vector �eld is m− s+M = m0−m1 +m2, and this must agree with χ,
we have proven Morse's equality.

Problem 16.3(1) First, let us note that from the de�nition,

∇′′
X(ea ⊗ e′R) = (∇Xea)⊗ e′R + ea ⊗ (∇′

Xe
′
R) = (ebω

b
a(X))⊗ e′R + ea ⊗ (eSω

′S
R(X))

on one hand, and on the other

∇′′
X(ea ⊗ e′R) = eb ⊗ e′Sω

′′bS
aR(X) ,

yielding
ω′′bS

aR = ωb
aδ

S
R + δbaω

′S
R , ω′′ibS

aR = ωb
iaδ

S
R + δbaω

′S
iR .

By de�nition,

∇′′
XΛ = (ea ⊗ e′R)X

j
(
∂jλ

aR + ω′′aR
bSλ

bS
)
= ea ⊗ e′RX

j∇jλ
aR

yielding
∇jλ

aR = ∂jλ
aR + ω′′aR

jbSλ
bS = ∂jλ

aS + ωa
jbλ

bR + ω′R
jSλ

aS .

Problem 16.4(1) Let us use Maxwell's equations,

d

dt

∫
z

B2 =

∫
z

∂

∂t
B = −

∫
z

dE1 = −
∫
∂z

E = 0 ,

as z is a cosed surface, ∂z = ∅.

Problem 16.4(2) The di�erence between the two local sections in the overlap region U ∩ V
is

A1
V −A1

U = −2qdφ ,

and this multiplied by −ie/ℏ shall agree with

−c−1
V UdcV U = − exp

(
2ieqφ

ℏ

)
d exp

(
−2ieqφ

ℏ

)
=

2ieq

ℏ
dφ ,

which holds.

Problem 16.4(3) Let us consider the extension using the transition formula (16.47), with
the transition function (16.51)

ψV (x) = cV U(x)ψU(x) = exp

(
−2ieqφ

ℏ

)
,

and examine this ψV around the negative z axis, where its value us discontinuous. This shows
that ψV cannot be the coordinate form of a smooth section of the bundle there, therefore ψU

cannot be extended to the whole space outside the origin.
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Problem 16.4(4) Transforming to cylindrical coordinates is x = r cosϑ, y = r sinϑ, so
dx = cosϑdr − r sinϑdϑ, dy = sinϑdr + r cosϑdϑ, so B = Bdx ∧ dy = Brdr ∧ dϑ. [The same
result could be reached by noting that dx ∧ dy = rdr ∧ dϑ is the area (2d volume) form of the
plane xy.] This is compared with dA = d[(B/2)r2dϑ] = Brdr ∧ dϑ.

The vector corresponding to the potential form is obtained with the inverse metric, as
grr = 1, gϑϑ = r2, gzz = 1 (all other components vanish), grr = 1, gϑϑ = r−2, gzz = 1, yielding
A = (B/2)∂ϑ, and ∥A∥2 = AϑAϑ = B2r2/4 = b2r2/(4π2a4). For the exterior potential,
Aexterior = bdϑ/(2π), the norm is ∥Aexterior∥2 = b2/(4π2r2).

At r = a, the two do match, for the inner �eld, ∥A∥2|r=a = b2/(4π2a2) and for the exterior
one, ∥Aexterior∥2|r=a = b2/(4π2), but not smoothly, the interior one is growing quadratically
and the exterior one falling o� as 1/r2, the derivative jumps. This is because the iterior has a
constant magnetic �eld B, and the outside magnetic �eld vanishes. At r = a is the coil, with
a current �owing in it.

Problem 16.4(5) On one hand, direct transformation yields cV U(y, t) times the above result,
as it is a contribution of this path to ψV (y, t). On the other hand, using the formula in the
patch V yields

ψV (x, 0) exp

[
i

ℏ

∫
γ

Ldt

]
exp

∫
γ

(−ωV ) .

Here ψV (x, 0) = cV U(x, 0)ψU(x, 0) and ωV = ωU + d log cUV = ωU − d log cV U , so

exp

∫
γ

(−ωV ) = exp

[∫
γ

(−ωU) + log cV U(y, t)− log cV U(x, 0)

]
therefore the two expressions agree, and gauge invariance is proven.

17 Fiber bundles, Gauss-Bonnet, and topological quantisation

Problem 17.2(1) Let us note that the projective space RP n−1 is the set of unoriented lines
(i.e., 1-planes) in Rn, RP n−1 = Gr(n−1, n). We may thus follow the construction of sec. 17.2b.
The orthogonal group O(n) acts naturally on Rn. The subgroup that sends a given space into
itself acts as O(n− k) on the orthogonal complement of a k dimensional subspace, and in the
k-dimensional subspace O(1) = {±1} �ips the orientation, therefore

Gr(k, n) ∼=
O(n)

O(1)×O(n− k)
.

The dimension is therefore that of O(n) minus that of O(n− k), n(n− 1)/2− (n− k)(n−
k − 1)/2 = k(2n− k − 1)/2.

Problem 17.2(2) The two curves were C = SO(2), rotations around the z axis (leaving the
z axis invariant), and C ′ the coset of the rotation diag(1,−1,−1).

We construct a mapping from SO(3) to RP 2 as follows. To any group element (rotation) g
we assign the line that correspond to gn, where n is the north pole. In this way, the projective
space is the factor space SO(3)/H, where H is the group leaving a point in the projective space
invariant. We shall show that this is the subgroup generated by C ∪ C ′.

Factoring the group SO(n) by the curve C yields a sphere S2, as shown in the text: any
point on S2 may be written as obtained from the north pole by a rotation, and rotations leaving
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the point p invariant may be written as ghg−1g where gn = p, n is the north pole, and hn = n,
i.e., h ∈ C.

Consider a point p ∈ S2, and x ∈ S2 beint the point of S2 on the positive x axis. For both of
these, there exist group elements in SO(3) such that gpn = g, gxn = x. Let c = diag(1,−1, 1),
then gpg

−1
x cgxg

−1
p = gpg

−1
x cgxn = gpg

−1
x cx = −gpg−1

x x = −gpn = −p, so factorising with C ′

identi�es antipodal points in S2.

Problem 17.2(3) Any k-frame can be extended by adding n−k vectors into an n-frame. The
space of n-frames can be identi�ed with O(n). The extension is ambiguous, as any orthogonal
transformation that leaves the original k vectors invariant can be applied on the additional
vectors.

Sn−1 is therefore the k = 1 case, Sn−1 ∼= O(n)/O(n−k). In the text Sn−1 ∼= SO(n)/SO(n−k)
was shown. An orientation �ipping transformation, in this sense, �can be cancelled�. The same
holds for the Stiefel manifolds for k < n, but not for k = n.

Problem 17.4(1) The transition function for the two coordinate patches for the manifold is
constructed in sec. 1.2d. in the book, yielding w = fwz(z) = 1/z. The transition function cwz

is a mapping between coordinates of vectors in the two patches. Note, that a coordinatisation
(inverse of a chart) in a patch is a mapping pz : C → S2, and a vector in the tangent space
may be coordinatised by pushing a vector forward by pz∗, so cwz = (pw∗)

−1pz = (p−1
w ◦ pz)∗. If

w = fwz(z) = p−1
w (pz(z)) = 1/z, i.e., fwz = p−1

w ◦ pz, we get cwz = fwz∗, (cwz∗)z(ζ) = −1/z2ζ.
A tangent vector may be coordinatised by ϕu, as follows: ϕzv = (p−1

z )∗v and ϕvv = (p−1
w )∗v.

Using the construction in sec. 1.2d, we get for the point on S2 ⊂ R2, pz(z) = (x, y, (1−x2−
y2)/2)T/(1+x2+y2) where z = x+iy, and similarly pw(w) = (u, v, (u2+v2−1)/2)T/(1+u2+v2).

The tangent vectors are obtained as a derivative of the parametrisation, v = ∂xpz(z)ξ +
∂ypz(z)η where ϕz = ζ = ξ + iη and v = ∂upw(w)κ + ∂vpw(w)λ where ϕw = µ = κ + iλ and
µ = cwz(z)ζ.

The calculation yields |v|2 = |ϕz|2/(1 + |z|2)2 = |ϕw|2/(1 + |w|2)2. Substituting µ = −ξ/z2
and w = 1/z yields |ϕz|2|z−2| = |ϕw|2|w|−2 = |v|2(|z|+ |z|−1)2 = |v|2(|w|−1 + |w|)2. This is the
metric singular at the poles. At the same time, (1 + |z|2)−2|ϕz|2 = (1 + |w|2)−2|ϕw|2 = |v|2 is
both independent of the patch used and non-singular.

Problem 17.4(2) According to eq. (17.30),

ω = ⟨e(α), de(α)⟩ =
〈
e,

∂e

∂αk

〉
dαk .

Choosing another basis e′(α) = e(α)eiβ(α) yields

ω′ = ⟨e′(α), de′(α)⟩ =
〈
eeiβ, d(eeiβ)

〉
=
〈
eeiβ, (de)eiβ + eeiβi dβ

〉
= ω + i dβ ,

which is the correct transformation rule.
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Problem 17.4(3) We take the exterior derivative of θ,

d

〈
e,

∂e

∂αk

〉
dαk =

∂

∂αj

〈
e,

∂e

∂αk

〉
dαj ∧ dαk

=

〈
∂e

∂αj
,
∂e

∂αk

〉
dαj ∧ dαk +

〈
e,

∂2e

∂αj∂αk

〉
dαj ∧ dαk

= i Im

〈
∂e

∂αj
,
∂e

∂αk

〉
dαj ∧ dαk ,

where in the second line, the second term vanishes due to the symmetry of partial derivatives
and antisymmetry of the wedge product. As the wedge product is antisymmetric, in the same
line, the scalar product may be antisymmetrised, and ⟨a, b⟩−⟨b, a⟩ = ⟨a, b⟩−⟨a, b⟩ = 2i Im⟨a, b⟩.

Problem 17.4(4) The covariant derivative of eiγ(α)ϕα is

∇ϕeiγ = (∇ϕ)eiγ + ϕeiγi dγ = ϕ(ω + i dγ)eiγ ,

and along the curve C, according to eq. (17.33) dγ = iω, therefore idγ = −iω, so the covariant
derivative vanishes along the curve.

Problem 17.4(5) Let us introduce polar coordinates, z = reiφ, so

dz = eiφdr + ireiϕdφ .

The basis section is

eU(z) =
(1, reiφ)T

(1 + r2)1/2
.

This yields

deU =
(0, dreiφ + ireiφdφ)

(1 + r2)1/2
− (1, reiφ)T

(1 + r2)3/2
rdr ,

and so

ωU = ⟨eU , deU⟩ =
ir2dφ

1 + r2
,

which is eq. (17.38). Taking the exterior derivative yields

dωU = i d
r2

1 + r2
∧ dφ =

2i rdr ∧ dφ

(1 + r2)2
,

which is eq. (17.39). The integral is∫∫
S

iθ

2π
= − 1

π

∫∫
S

rdrdφ

(1 + r2)2
= −2

∫ ∞

0

rdr

(1 + r2)2
= −

∫ ∞

0

du

(1 + u)2
= −

[
u

1 + u

]∞
0

= −1 .
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18 Connections and associated bundles

Problem 18.1(1) An element of the group is of the form

A(1) ∋ g =
(
x y
0 1

)
,

therefore

g−1dg =

(
1/x −y/x
0 1

)(
dx dy
0 0

)
=

(
dx
x

dy
x

0 0

)
,

and similarly

dgg−1 =

(
dx
x

dy − ydx
x

0 0

)
.

Problem 18.1(2) The connection form has the property

∇eU = eU ⊗ ωU , ∇eV = eV ⊗ ωV .

The connection form therefore tranforms as

ωV = c−1
UV ωUcUV + c−1

UV dcUV ,

and
ω∗
U = g−1

U π∗ωUgU + g−1
U dgU ,

and
ω∗
V = g−1

V π∗ωV gV + g−1
V dgV .

Using the expression given in the problem for a point in the �ber, we obtain f = eV gV =
eUcUV gV = eUgU yielding gV = c−1

UV gU , so

ω∗
V = g−1

U cUV π
∗ωV c

−1
UV gU + g−1

U cUV c
−1
UV dgU − g

−1
U cUV c

−1
UV dcUV c

−1
UV gU ,

where we used c−1
UV cUV = e, therefore dc−1

UV cUV + c−1
UV dcUV = 0. We substitute ωV , yielding

ω∗
V = g−1

U π∗ωUgU + g−1
U dcUV c

−1
UV gU + g−1

U dgU − g−1
U dcUV c

−1
UV gU = ω∗

U .

Problem 18.2(1) (i) Consider a globally de�ned n-form σ. In any coordinate frame, we may
write this as

σ = σ12...ndx
1 ∧ · · · ∧ dxn ,

and on an overlap U ∩ V , the transition function is obtained as follows,

σV,i1,...,in =
∂xj1U
∂xj1V

. . .
∂xjnU
∂xjnV

σU,j1,...,jn = det
∂xU
∂xV

σU,i1,...,in ,

i.e., it satis�es the transformation rule of a section of the determinant bundle.
(ii) In an associated bundle with representation ρ, the connection form Ω is constructed,

according to eq. (18.24) as ΩU = ρ∗ω. What we need to obtain is the representation ρ, which, in
the case of the determinant bundle is obtained as follows. In the tangent bundle, the transition
functions are ctV U = ∂xV /xU , so cV U = det(ctV U)

−1 = 1/ det ctV U . Therefore

Ω = ρ∗(ω) = (1/ det)∗ω = −Trω ,
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as the derivative of the determinant at the unit is the trace, and the tangent to 1/ det is
(1/ det)∗ = (−1/ det2) det∗ = −Tr as det e = 1.

(iii) In the case of a Riemannian manifold, the structure group is O(n), which has two dis-
connected components, therefore the determinant cannot change sign in one connected overlap
of two patches. Let U ∩ V be a(connected component) of an overlap, and ε the sign here, in
any case, let ΩU = −TrωU and ΩV = −TrωV . We know that ωV = (ctV U)

−1ωU .
Let us consider a section ϕ of the volume bundle that has its support within U∩V . We shall

suppress the indices 1, 2, . . . , n on the components of the pseudoforms, simply writing the single
component without indices. This transforms as ϕV = | det ctUV |ϕU , therefore εϕU = det ctV UϕU ,
i.e., these de�ne a section of the determinant bundle, where ΩU = −TrωU and ΩV = −TrωV

yield a correct connection form, and the covariant derivative transforms as follows

∇UXϕU = X(ϕU)− TrωU(X)ϕU ,

∇VXεϕV = X(εϕV )− TrωV (X)εϕV = cV U∇UXϕU

This just yields the correct transformation law

∇VXϕV = εcV U∇UXϕU = c′V U∇UXϕU .

Problem 18.2(2) Let us consider the derivative of the representation at the unit element.
The Lie algebra of SO(2) is the set of antisymmetric matrices, and the derivative of ρ acts as
follows,

ρ∗ : g→ iR , g ∋
(
0 −1
1 0

)
7→ i ,

which can be seen by considering the inverse mapping an taking its ordinary derivative. The in-
verse mapping from U(1)→ SO(2) is given by substituting θ = −i log ρ(g) into the parametrised
form of the matrix.

Comparing the antisymmetric matrix(
0 ω12

ω21 0

)
, ω12 = −ω21 ,

and the above one, yields for the connection in the line bundle iω21, just as expected.

Problem 18.3(1) Let us calculate the covariant derivative, a p+ 1-form Ad(G) �eld

∇ψ = dψ + [ω, ψ] ,

and so, using eqs. (18.8) and (18.9),

∇2ψ = d2ψ + [ω, dψ] + d[ω, ψ] + [ω[ω, ψ]]

= [dω, ψ] + [ω, [ω, ψ]]

= [dω, ψ] + ω ∧ [ω, ψ]− (−1)p+1[ω, ψ] ∧ ω
= [dω, ψ] + ω ∧ ω ∧ ψ − (−1)pω ∧ ψ ∧ ω − (−1)p+1ω ∧ ψ ∧ ω − ψ ∧ ω ∧ ω
= ω ∧ ω ∧ ψ − ψ ∧ ω ∧ ω = [ω ∧ ω, ψ] .

(An important part of the derivation was that ω is a 1-form, i.e., in eqs. (18.8, 9), q = 1, and
ω ∧ ω is a 2-form, there q = 2.)
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Problem 18.3(2) To show that ϕ ∧ ψ is a section, we need to verify that its transition
functions are correctly that of an AdGl(N) bundle, i.e., that

(ϕ ∧ ψ)V = AdcV U(ϕ ∧ ψ)U .

Using the fact that G ⊂ Gl(N), i.e., Adg acts on a matrix M ∈ gl(N) as M 7→ gMg−1 for any
g ∈ G, and, considering their values on a p+ q-tuple of vectors

(ϕ ∧ ψ)V = ϕV ∧ ψV = cV UϕUc
−1
UC ∧ cUV ψUc

−1
UV = cUV ϕU ∧ ψUc

−1
UV = cUV (ϕ ∧ ψ)Uc−1

UV .

To show the Leibniz rule, note that on the adjoint bundle, the connection form acts as a
commutator,

∇ϕ = dϕ+ [ω, ϕ] ,

∇ψ = dψ + [ω, ψ] ,

[see eq. (18.35)]. The exterior derivative satis�es the Leibniz rule, therefore, it is the second
term that needs to be considered, using eq. (18.9)

[ω, ϕ ∧ ψ] = ω ∧ ϕ ∧ ψ − (−1)p+qϕ ∧ ψ ∧ ω
= [ω, ϕ] ∧ ψ + (−1)pϕ ∧ ω ∧ ψ + (−1)pϕ ∧ [ω, ψ]− (−1)pϕ ∧ ω ∧ ψ
= [ω, ϕ] ∧ ψ + (−1)pϕ ∧ [ω, ψ] ,

which completes the proof. The result for the curvature form follows from the Bianchi identity
(18.41), ∇θ = 0, which appears in all monomials.

Problem 18.3(3) In order that the trace is de�ned, the structure group must be a matrix
group, G ⊂ Gl(N). In that case, the group acts as follows,

ϕV = cV UϕUc
−1
V U ,

and so
TrϕV = Tr(cV UϕUc

−1
V U) = TrϕV ,

where we have used the cyclic symmetry of the trace. This shows that the ordinary form Trϕ
is globally de�ned.

Problem 18.3(4) What needs to be shown is that if the group valued functions {hU} �t
together to form a section of the adjoint bundle, then the transformed functions {hUgU} of a
section of the principal bundle also globally de�ne a new section, i.e.,

hV gV = cV UhUc
−1
V UcV UgU = cV UhUgU .

Note: sec. 9.4b discussed gauge transformations in the case of the frame bundle, as a change
of frame, in the intersection of two trivialisation patches. If we choose one of them, V , to be
the same patch on the base manifold with a di�erent frame in the space of sections, we connect
changes of frame to the above de�nition of gauge transformations.
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19 The Dirac equation

Problem 19.2(1) Let us �rst give a simple expression for the product of two Pauli matrices,
from eqs. (19.6) and (19.18), as

σjσk =
1

2
([σk, σk] + {σj, σk}) = iεijkσi + δjkI .

Using the product,

(σ ·A)(σ ·B) = AjBkσjσk = AjBk(δjk+iϵijkσi) = AjBjI+i(A×B)iσi = (A·B)I+i(A×B)·σ ,

proving (19.19). In particular, (σ ·A)2 = |A|2I, or simply = I if A is a unit vector.
The formula (19.20) for rottion follows from here as in Problem 15.2(1), by separating the

odd and even powers of σ ·Aθ/(2i), i.e., setting J = −iσ ·A and

exp
θJ

2
=
∑
n

1

n!
(θJ/2)n ,

and replace (θJ)n = (θ/2)nJn, and take into account J2 = −I, separate n = 2k and n = 2k+1,
yielding eq. (19.20),

exp θJ =
∑
k

1

(2k)!
(−1)k(θ/2)2kI+

∑
k

1

(2k + 1)!
(−1)k(θ/2)2k+1J =

(
cos

θ

2

)
I−i

(
sin

θ

2

)
σ·A .

Multiplying (19.20) twice, replacing A, θ by B, ϕ in the second one, using eq. (19.19) and
collecting terms, yields eq. (19.21),

R1R2 = exp

(
σ ·A
2i

θ

)
exp

(
σ ·B
2i

ϕ

)
=

((
cos

θ

2

)
I − i

(
sin

θ

2

)
σ ·A

)((
cos

ϕ

2

)
I − i

(
sin

ϕ

2

)
σ ·B

)
=

(
cos

θ

2
cos

ϕ

2
− sin

θ

2
sin

ϕ

2
A ·B

)
I

− iσ ·
(
sin

θ

2
cos

ϕ

2
A+ cos

θ

2
sin

ϕ

2
B+ sin

θ

2
sin

ϕ

2
(A×B

)
.

Using eq. (19.21) in the case when θ = ϕ = π/2 and A = k and B = j we have 1/
√
2 for

all the sines and cosines and A · B = 0 and A × B = k × j = −i, the unit vector along the
negative x axis, and

R1R2 =
1

2
I − iσ

−i+ j+ k

2
=

1

2
I − i

√
3

2
σ · −i+ j+ k√

3
,

which is a rotation with an angle α = 2π/3 around the axis (−i+ j+ k)/
√
3.
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Problem 19.3(1) The mapping is de�ned follows. We map M4 to H(2,C), the set of all
Hermitean matrices, by

x 7→ x∗ = xjτj = xT τ , and x 7→ x∗ = xTητ ,

and the inverse is given as

xj =
1

2
Tr(τjx∗) .

Note that detx∗ = detx∗ = −⟨x, x⟩ and x∗x∗ = x∗x∗ = ⟨x, x⟩I.
With these, a mapping Λ : Sl(2,C)→ L0 is de�ned as

A 7→ Λ(A)x := (∗)−1AxAT .

i.e.,
(Λ(A)x)∗ = AxAT .

For this to be a representation with L0 matrices, we need to demonstrate that (i) it maps into
L0, i.e., it preserves the scalar product of Minkowski space, (ii) maps product to product, and
(iii) maps inverse to inverse.

Let us �rst consider (i), as seen in the proof of thm. (19.40), it is su�cient to demonstrate
that it preserves ⟨x, x⟩ for all x ∈ M , then the product of any two vectors can be derived via
the polarisation identity. Let A ∈ Sl(2,C),

⟨Λ(A)x,Λ(A)x⟩ = − det(Λ(A)x)∗ = − det(Ax∗A
T ) = − det(A)2 detx∗ = − detx∗ = ⟨x, x⟩ .

For products, let A,B ∈ Sl(x,C),

(Λ(AB)x)∗ = (AB)x∗(AB)T = ABx∗B
TAT = A(Λ(B)x)∗A

T = Λ(A)Λ(B)x∗ .

Similarly,
Λ(A−1)(Λ(A)x)∗ = Λ(A−1A)x∗ = x∗ .

20 Yang-Mills �elds

Problem 20.1(1) We follow the derivation in sec. 20.1a,b, with

L = gjkϕ/jϕ/k + 2ρϕ ,

to obtain the Euler-Lagrange equations in the form

δL

δϕ
= 2ρ− 2(gjkϕ/k)/j = 0 ,

and the last term is twice the Laplacian, (1/
√
g)∂(
√
ggjk∂ϕ/∂xk)/∂xj. The Euler-Lagrange

equation is the Poisson (or, in the case of a pseudo-Riemannian manifold, Klein-Gordon) with
potential ρ.

The essential (or imposed) boundary condition is δϕ = 0 on δM , i.e., the variations must
vanish on the boundary. The natural boundary condition is

∂L

∂ϕ/j

Nj = 2gjkϕ/kNj = 0 .

The natural boundary condition sets the normal (covariant) derivative of the scalar �eld ϕ to
0, i.e., it generalises the Neumann boundary condition.
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Problem 20.1(2) (i) The original form of Jacobi's equation (4.10) is

dY i

dt
=
∑
j

∂X i

∂xj
Y j ,

where x = x(t) is a solution to the system dx/dt = Xx. Therefore,

∇Y i

dt
=

dY i

dt
+ Γi

jkX
jY k =

(
∂X i

∂xk
+ Γi

jkX
j

)
Y k = Y k∇kX

i = (∇YX)i .

We have used the symmetry of the Levi-Civitá connection.
(ii) Let us now consider two vector �elds, X and Y , and use the above result,

d⟨Y, Z⟩
dt

=

〈
∇Y
dt

, Z

〉
+

〈
Y,
∇Z
dt

〉
= ⟨∇YX,Z⟩+ ⟨Y,∇ZX⟩ = Y iZjXi/j ,

therefore the invariance of the �elds, d⟨Y, Z⟩/dt = 0 for arbitrary Y i(0) and Zj(0) yields
Killing's equations.

(iii) Let now δx = J be a variation due to the action of an in�nitesimal isometry, i.e.,
δx(s) = dϕt(x(s))/dt|t=0, and consider

d⟨δx,T⟩
ds

= ⟨∇TJ,T⟩+ ⟨J,∇TT⟩ = ⟨∇TJ,T⟩ = Ji/kT
kT i =

1

2
(Ji/k + Jk/i)T

iT k = 0 .

(iv) The �rst derivative is

d⟨X,X⟩
ds

= 2⟨∇TX,X⟩ = 2X iT jXi/j = −2X iTjXj/i = −2⟨∇XX,T ⟩ .

The second derivative is therefore, taking into account that T is the tangent of a geodesic,
∇TT = 0,

d2⟨X,X⟩
ds2

= −2⟨∇T∇XX,T ⟩ = −2T iT j(XkXi/k)/j = −2T iT jXk
/jXi/k − 2T iT jXkXi/kj .

As X is a Killing vector �eld, Xk/j = −Xj/k yielding, for the �rst term,

−2T iT jXk
/jXi/k = 2T iT jXk

/jXk/i = 2⟨∇TX,∇TX⟩ ,

and in the second one, we use eq. (11.23) as X i
/kj = X i

/jk +Ri
mjkX

m yielding

−2T iT jXkXi/kj = −2T iT jXkXi/jk − 2TiR
i
mjkT

jXkXm = −2T iT jXkXi/jk − 2⟨R(T,X)X,T ⟩ ,

where the last term is = −⟨R(X,T )T,X⟩, due to the symmetries of the Riemann tensor. The
other term vanishes due to the antisymmetri of Xi/jk in i, j. Collecting the terms,

d2⟨X,X⟩
ds2

= −2⟨R(X,T )T,X⟩+ 2⟨∇TX,∇TX⟩ .

Let us now choose the (n−1) orthonormal Tα, such that they are orthonormal and orthogonal
to X. Note that due to the anti-symmetries of the Riemann tensor, R(X,X)X = 0, so that
term drops out from the calculation of the Ricci tensor,∑

α

Ri
jklXiT

j
αX

kT l
α =

∑
α

Ri
jklT

i
αX

jT k
αX

l = RjlX
jX l ,
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yielding ∑
α

d2⟨X,X⟩
ds2

= −2RijX
iXj +

∑
α

2⟨∇TαX,∇TαX⟩ ,

which is ≥ 0 if the Ricci-curvature is negative de�nite, so ⟨X,X⟩ cannot be maximal at p,
proving Nomizu's theorem.

If M is compact, any continuous function on it would assume its maximum at some point
p, which would contradict Nomizu's theorem. This proves Bochner's theorem.

Problem 20.1(3) (i) A small change in x produces the displacement δx, f ′(x) cosϑδx,
f ′(x) sinϑδx and a small change in ϑ the one 0,−f(x) sinϑδϑ, f(x) cosϑδϑ. The two are or-
thogonal, and the metric is

ds2 = (1 + f ′(x)2)dx2 + f(x)2dϑ2 .

(ii) The two unit vectors on the plane are ex = (1/
√

1 + f ′2)∂/∂x and eϑ = [1/f(x)]∂/∂ϑ, so
the unit normal of an arc-length parametrised geodesic may be written as T = cosαeϑ+sinϑex,
and this vector makes an angle α with the lines of latitude. As J is a Killing vector, its dot
product with the tangent of the geodesic is a constant along the curve [see eq. (20.10)],

⟨J,T⟩ = f(x) cosα = const. along C .

(iii) Using the relation Q = f(x) cosα = const. we may calculate the cosine of the angle
where at given x as cosα(x) = f(0) cosα(0)/f(x). As the function is monotonous, and decays
as x→ −∞ to 0, there is a value −a2 < 0 where cosα = 1, where f(−a2) = cosα0. The curve
cannot cross this line, it is tangent to the latituse circle here.

In the x > 0 side of the horn, cosα = cos(α(0))f(0)/f(x)→ 0, i.e., the curve approaches a
curve at constant θ, orthogonal to the latitude circles.

Problem 20.1(4) (i) Let us construct the two orthonormal vectors, ex = y∂/∂x and ey =
y∂/∂y. The unit tangent of a geodesic then is T = cosαex + sinαey. The conserved quantity
corresponding to the Killing vector ∂/∂x is

k = ⟨T, ∂/∂x⟩ = (1/y)g′xx = y−1 cosα .

This is constant, as in eq. (20.10).
(ii) Consider the straigh horizontal line, which, when parametrised with line length, i.e.,

x = ys, y = const, which has dx/ds = y, and dy/ds = 0, and add a variation vector, δx,
δy, which, in order to be a variation between two arc-length parametrised curves, must satisfy
⟨T, δx⟩ = 0, i.e., its x component must vanish, then

δ

∫
[x′(s)2 + y′(s)2]

y2
ds =

∫
[x′2]δ

1

y2
ds = −

∫
1

y
δyds < 0 ,

where x′ = y, y′ = 0 and x′δx′ = y′δy′ = 0.
(iii) Let us assume that two metrics are conformally related. The angle between two vectors

has

cos∠(v,w) =
g(v,w)√

g(v,v)g(w,w)
,
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and

cos∠′(v,w) =
g′(v,w)√

g′(v,v)g′(w,w)
=

λ2g(v,w)√
λ2g(v,v)λ2g(w,w)

= cos∠(v,w) .

(iv) Consider the equation derived in part (i) of the problem, y−1 cosα = k, the derivative
of which w.r.t. s0 is

−y−2 dy

ds0
cosα− y−1 sinα

dα

ds0
= 0 ,

which may be solved for dα/ds0, and dy/ds0 = sinα my be inserted, yielding

dα

ds0
= −y−1 cosα(sinα)−1 dy

ds0
= −y−1 cosα = −k .

If the geodesic is not a vertical line, then cosα ̸= 0, and on the upper half-plane, y > 0, so
k > 0, the line is not straight, but an arc of a circle. At the highest point, dy/ds0 = 0, so
α = α0 = 0, and so k = y−1

0 cosα0 = y−1
0 . This yields α′(s0) = −k = −1/y0, the angle

changes uniformly with Euclidean arc-length. It reaches x = 0 at α = ±π/2, where dy/ds0 =
sinαdα/ds0 = −k sin(±π/2) = ∓k and dx/ds0 = cosαdα/ds0 = −k cos(±π/4) = 0, which
shows that it is orthogonal to the x = 0 line.

Problem 20.2(1) The Dirac Lagrangian is given by eq. (20.18),

Le =
1

2

[
ψ̃γj∂jψ − (∂jψ̃)γ

jψ
]
−mψ̃ψ , (20.18)

where ψ̃ = ψ†iγ0. Whenderiving variational equations, we use eq. (20.7), but when taking
derivatives w.r.t. ψ̄a, we multiply the result (from the right) by (iγ0)−1 = iγ0 (note, that in the
conventions of the book. (γ0)2 = −I). The result is the same as if we took derivatives w.r.t.
ψ̃, yielding

∂Le

∂(∂ψ̃)
= −1

2
γjψ ,

and
∂Le

∂ψ̃
=

1

2
γj∂jψ −mψ ,

yielding
1

2
γj∂jψ −mψ − ∂j

(
−1

2
γjψ

)
= γj∂jψ −mψ ≠∂ ψ −mψ = 0 ,

which is the Dirac equation. We can also take derivatives w.r.t. ψ,

∂Le

∂(∂ψ)
=

1

2
ψ̃γj ,

and
∂Le

∂ψ
= −1

2
∂jψ̃γ

j −mψ̃ ,

yielding

−ψ̃
←−
̸∂ −mψ̃ = 0 .
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Problem 20.2(2) In eq. (20.23), it was shown that with the the Dirac Lagrangian, with the
derivative replaced by the covariant derivative, contains a term AjJ

j, therefore

J j =
∂Le

∂Aj

,

and, as Aj is a section of T ∗M , J j must be a section of TM , according to eq. (20.3).
The transformation properties of the current are derived as

Jk = ψ̃iγkψ 7→ ψ†ρ(A)†iγ0iγkρ(A)ψ = ψ†iγ0ρ(A)−1iγkρ(A)ψ = ψ̃iρ(A)−1γkρ(A)ψ = (Λ−1)ikJi ,

as ψ̃ = ψ†iγ0, and we have used eq. (20.26) in the form ρ(A)†γ0 = γ0ρ(A)−1, and (19.44) in the
form (Λ−1)ijγi = ρ(A)−1γjρ(A). The tranformation rule we obtained is that of the cotangent
bundle T ∗M . If Jk transforms as a covector, Jk does as a vector.

Problem 20.2(3) Applying a gauge transformation changes ψ 7→ eiαψ, ψ̃ 7→ ψ̃e−iα and
A 7→ A+ dα, so the interaction terms transforms as

AjJ
j = Ajiψ̃γ

jψ 7→ (Aj + ∂jα)ie
−iαψ̃γjeiαψ = (Aj + ∂j)iψ̃γ

jψ = AjJ
j + ∂jαJ

j .

Also, as the current is conserved [see thm. (20.8)], J j
/j = 0

(αJ j)/j = ∂jαJ
j + αJ j

/j = ∂jαJ
j ,

so ∫
M

∂jαJ
j√gdx =

∫
M

(αJ j)/j
√
g =

∫
∂M

αJ jNjdS = 0 ,

if J has compact support, as then it vanishes on the boundary, showing that the integral of
AjJ

j is unchanged.

Problem 20.3(1) The transformation rule must be that of a connections, so, if a gauge
transformation acts as

ω 7→ g−1ωg + g−1dg , ω′ 7→ g−1ω′g + g−1dg ,

for their convex combination, ωa = (1− a)ω + aω′ the same holds,

ωa 7→ g−1ωag + g−1dg .

Problem 20.4(1) The Lie algebra su(N) is the space of skew Hermitean matrices,

su(N) = {X ∈ CN×N |X† = −X} .

We shall show that the scalar product

g× g ∈ (X, Y ) 7→ ⟨X, Y ⟩ := −TrXY

is real, symmetric, and positive de�nite.
The scalar product is symmetric, as TrXY = TrY X for any two matrices.
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It is real, as the trace of a matric and its transpose is the same, and the trace has the cyclic
permutation property, so

⟨X, Y ⟩ = −TrXY = −Tr(XY )T = −TrY TXT = −TrXTY T = −TrX†Y † = ⟨X, Y ⟩ .

Positive de�niteness may be shown as

⟨X,X⟩ = −
∑
i,j

XijXji =
∑
i,j

XijX̄ij =
∑
i,j

|Xi,j|2 ≥ 0 ,

as X† = −X, i.e., X̄ji = −Xij or Xji = −X̄ij.

Problem 20.5(1) Starting from eq. (20.50), let us choose i = 0, j = 1, k = 2, yielding

∂0B3 − ∂2E1 + ∂1E2 − iq {[A0, B3] + [A2,−E1] + [A1, E2]} = 0 ,

which is the 3rd component of

curlE+
∂B

∂t
= iq (A0B−BA0 +A× E+ E×A) .

The other two components also yield the components of this expression.
Choosing i = 1, j = 2, k = 3 yields

∂1B1 + ∂3B3 + ∂2B2 − iq ([A1, B1] + [A3, B3] + [A2, B2]) ,

which can be written as
divB = iq (A ·B−B ·A) .

Problem 20.5(2) Let us �rst consider

F = dA− iqA ∧ A = dA− iq
1

2
[A,A] ,

where the coe�cients of dt are

E2 = dϕ− ∂A1

∂t
− iq[A1, ϕ] ,

where we have expanded

A ∧ A = (A1 + ϕdt) ∧ (A1 + ϕdt) = A1 ∧A1 + ϕdt ∧A1 +A1 ∧ ϕdt = 1

2
[A1,A1] + [A1, ϕdt] ,

and the part not containing dt is

B2 = dA1 − iqA1 ∧A1 = dA1 − iq

2
[A1,A1] .

Continuing with the Bianchi identities ∇F = dF − iq[A,F ] = 0, here the terms containing dt
are

dE1 − ∂B2

∂t
= iq

(
[A1,E1] + [ϕ,B2]

)
,
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and the ones that do not contain dt are

dB = iq[A1,B2] .

For the Yang-Mills equation we need

∗(E1 ∧ dt) = ∗E1 ,

which is esily seen in component notation. Similarly,

∗B2 = − ∗B2 ∧ dt ,

yielding
∗F = − ∗B2 ∧ dt+ ∗E1 .

so, d ∗ F = 0 yields, from terms not containing dt

d ∗ E = iq[A1,∗E2] ,

and from the coe�cients of dt,

d ∗B =
∂ ∗ E1

∂t
+ iq

(
[A1,∗B2]− [ϕ,∗E1]

)
.

Problem 20.5(3)

δ(θ, ∗θ) = (δθ, ∗θ) + (θ, ∗δθ) = (∇δω, ∗θ) + (θ, ∗∇δω) = ±(δω,∇∗ ∗ θ) + (∗θ,∇δω) ,

where in the �rst term, we have used the de�nition of ∇∗, and in the second one, the symmetry
of the scalar product, and its de�nition,

(α, ∗β) =
∫
M

α ∧ ∗ ∗ β = ±
∫
M

α ∧ β = ±
∫
M

β ∧ α = (β, ∗α) .

The upper sign is for the Riemannian, the lower for the pseudo-Riemannian case. In the �rst
term, we use

∇∗ ∗ θ = − ∗∇ ∗ ∗θ = ∓ ∗∇θ = 0 ,

where we used the Bianchi identities. In the second term, we again move the covariant derivative
to the other side, and proceed the same way.

Problem 20.6(1) What is to be shown is that

1

2π

∫∫
M

KdA =
∑
p

jP (eU)−
1

2π

∮
S1

d∠(eV , eU) . (20.69)

The vector �elds eU and eV are shown in �g. 20.4. Both �elds are singularity free, so the �rst
term on the right in eq. (20.69) vanishes. The left hand side is evaluated as follows: the Gauss
curvature of a sphere is K = 1/r2, where r is its radius, and the surface of the half-sphere is
2πr2, yielding 1 for the left hand side. The vector �eld eU shown in the �gure rotates twice
around the tangent of the equatior while moving around it, in negative (clockwise) direction,
therefore the integral in the second term on the rigth is −2π.
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Problem 20.6(2) (i) The frame V is �at, and on the boundary S3, ωU = g−1dg. If the frame
could be extended into the interior, then so could be g. The degree of the mapping g equals
the integral,

deg(g) =

∫
S3

g∗volG =

∫
B4

dg∗volG =

∫
B4

g∗dvolG = 0 ,

where volG is the Haar measure on the group G normalised to unity, and B4 is the ball whose
boundary is S3.

(ii) The mapping g is constant e on the sides of the can. Therefore in the integral, the side
does not contribute. The negative sign is due to the choice of orientation of D, i.e., that its
normal was chosen time-oriented, and not towards the outside of the can.

(iii) The can is homotopic to the boundary S3. As it is deformed into it, the integral must
change continuously. It is also an integrer, therefore, it is constant.

Problem 20.6(3) (i) In the limit ∥x∥ → ∞, in any given direction x = At, ∥A∥ = 1, the
vector multiplying the Pauli matrices has a limit

iπx

(∥x∥2 + λ2)1/2
→ iπA ,

and so, using eq. (19.20), g(x)→ −I, independent of the direction.
(ii) Let us consider again a given direction, x = tA. In that case the angle parameter in

eq. (19.20) increases monotonously from t = 0 (at the origin) to π at t = ∞, so the matrices
cosα+ i sinα(σ ·A), always di�er from I. At the origin, the derivative of the mapping is given
as

g0∗x =
iπx · σ
|λ|

,

which is invertible (using the trace formula). This shows that 0 is a regular value.

21 Betti numbers and covering spaces

Problem 21.1(1) The de�nition of the Cartan 3-form is

Ω3 = TrΩ ∧ Ω ∧ Ω, ,

which is evaluated in eq. (21.5) on three Lie algebra elements, yielding

Ω3(X,Y,Z) = 3⟨[X,Y],Z⟩ ,

using the Ad-invariant scalar product. Let us consider the basis dual to a frame of left-invariant
1-forms σi, Xi. Then

(Ω3)ijk = Ω3(Xi,Xj,Xk) = −3⟨[Xi,Xj],Xk⟩ = −3⟨C l
ijXl,Xk⟩ = −3glkC l

ij = Ckij = Cijk .

The antisymmetry is a consequence of that of the wedge product.
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Problem 21.3(1) We use Synge's formula (12.6),

L′′(0) = ⟨∇JJ,T⟩L0 +

∫ L

)

{
∥∇TJ∥2 − ⟨R(J,T)T,J⟩

}
ds ,

and use the form of J, and that the ei are orthonormal. Due to the form of Ji,

∇TJ = ∇T(f(s)ei(s)) = f ′(s)ei + f(s)∇Tei = f ′(s)ei ,

and also
⟨R(J,T)T,J⟩ = f(s)2⟨R(ei, e1)e1, ei⟩ = f(s)2Ri1i1 = f(s)2Ri

1i1 .

The boundary term vanishes, as J vanishes at the endpoints. All this yields

L′′(0) =

∫ L

0

{
f ′(s)2 − f(s)2Ri

1i1

}
ds .

The second formula is simply summing up, noting that R1
111 = 0 due to the antisymmetry

of the Riemann tensor in any of the two index pairs, and the de�nition of the Ricci tensor as
Rjk = Ri

jik.

Problem 21.3(2) Substituting the function f into the result in the previous problem,

n∑
i=2

L′′
i (0) =

∫ L

0

n∑
i=2

∣∣∣π
L
cos

πs

L

∣∣∣2 − ∣∣∣sin πs
L

∣∣∣2Ric(T,T)ds ,

<
π(n− 1)

2L
−
∫ L

0

c sin2 π
2s

L
ds =

π2(n− 1)

2L
− cL

2
=
L

2

[
π2(n− 1)

L2
− c
]
.

If the term in the brackets is negative, the curve cannot be a length-minimising geodesic (as
there is a shortening variation). The term in the brackets is negative is L2 > π2(n− 1)/c.

Problem 21.3(3) The Ricci curvature of this sphere is obtained as follows: as its cross
section is a circle, its sectional curvature is 1/a2, and using eq. (11.67), the Ricci curvature is
Ric(T,T) =

∑n
j=2 1/a

2 = (n−1)/a2, that is C. So if L > πa then it is not a length minimising
geodesic.

Geodesics on spheres are main circles. The ones longer that πa are the ones that are larger
than half an equator. These are clearly not length minimising, as they can be shifted o� the
sphere.

Problem 21.3(4) For the theorem to hold, the curvature has to have a lower positive bound
c > 0, whereas in the case of the paraboloid, it approaches 0 as x2 + y2 →∞.

Problem 21.3(5) (i) Let J(s) be a variation of the geodesic C, such that J(0) = 0, i.e.,
it changes q but not p, and also note that C is a geodesic, ∇T/ds = 0. The �rst variation
formula, eq. (10.4), yields

L′(0) = ⟨J,T⟩q = 0 ,

as C is a minimising geodesic.
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(ii) According to Synge's formula,

L′′
i (0) = ⟨∇TJ,T⟩L +

∫ L

0

{
|g′(s)|2 − |g(s)|2Ri

1i1

}
ds ,

and the �rst term is, according to eq. (11.50),⟨∇JJ,T⟩ = B(J,J). Summing up for n such
variations,

∑n
i=2 g(L)

2B(ei, ei) = g(L)2(H(q) − ⟨∇TT,T⟩) = g(L)2H(q), ad C is a geodesic.
Now we proceed as in prob. 21.3(1), arriving at

n∑
i=2

L′′
i (0) = g(L)2H(q) +

∫ L

0

{
(n− 1)|g′(s)|2 − |g(s)|2Ric(T,T)

}
ds ,

and inserting g(s) = s/L yields the desired result, as
∫ L

0
g′(s)2ds =

∫ L

0
(1/L)2ds = 1/L.

(iii) As C is a minimising geodesic, L′′
i (0) > 0, and so is their sum. On the other hand,

0 <
n∑

i=2

L′′
i (0) < h+

n− 1

L
,

and the last formula, h + (n − 1)/L decreases with L and reaches 0 at L = −(n − 1)/h =
(n− 1)/|h|.

Problem 21.4(1) The curvature tensor is de�ned as

R(X,Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z ,

and we use ∇YZ = 1
2
[Y,Z], etc., to obtain

R(X,Y)Z =
1

4
[X, [Y,Z]]− 1

4
[Y, [X,Z]]− 1

2
[[X,Y],Z] . (*)

The Jacobi identity says that any of these double brackets plus its cyclic permutations vanishes,
e.g.,

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0 ,

which, using the anti-symmetry of the Lie bracket, can be rewritten as [X, [Y,Z]] = [Y, [X,Z]]+
[[X,Y],Z], the �rst term on the right cancels the second term in eq. (*), and the second one
1/2 of the third, thereby resulting in

R(X,Y)Z = −1

4
[[X,Y],Z] ,

which is what was to be proven.

Problem 21.4(2) Eq. (18.32) tells us that

adX(Y) = [X,Y] = 0 .

Using eq. (18.33),

etadXY = Y + t[X,Y] +
t2

2
[X, [X,Y]] + · · · = Y .

66



Using AdetXY = etadX from eq. (18.32) yields etXYe−tX = Y, which, when exponentiated,
yields exp(etXYe−tX) = eY.

Note: not assuming that G is a matrix group, we have shown AdetXY = Y and also
exp (AdetxY) = eY.

Next we need to show that etXeY = eYetX, or, etXeYe−tX = eY. Let us add a parameter s,
and show that

etXesYe−tX = esY ,

for all s. On both sides of the equation, there is an element of a 1-parameter subgroup at the
same parameter value. To show that they agree, it su�ces to show that their tangent (d/ds)
at s = 0 agrees, which is AdetXY on the left, and Y on the right, which do agee.

Using thm. (21.11), the group is geodesically complete, any g ∈ G can be written in the
form of eY. We have thus shown that etX commutes with all of G, so it is in the centre.

Problem 21.4(3) The torsion is de�ned as

τ(X,Y) = ∇YX−∇XY − [X,Y] .

Also, T i
jkei = τ(ej, ek), so let us evaluate this. As ∇e = e⊗ ω = 0 for the �at connection, only

the last term remains,
T i
jkei = −[ej, ek] = −Ci

jkei .

22 Chern forms and homotopy groups

Problem 22.1(1) If the structure group is a subgroup of U(N), then ω is a u(N) valued
form, i.e., its value is an anti-Hermitean matrix, ω†

x = −ωx. Let us consider the conjugate of the
determinant, det(I + iθ/2π) = det(I − iθ̄/2π). On the other hand, ω†

x = −ω̄T
x , so ω̄x = −ωT

x ,
and so det(I + iθ/2π) = det(I + iθT/2π) = det(I + iθ/2π), as the determinant of the transpose
is the same as that of the matrix itself.

Problem 22.1(2) The Chern forms are de�ned y eq. 22.10), and we shall use the expansion
(22.7) with eqs. (22.8), yielding

det

(
I +

iθ

2π

)
= 1 +

i

2π
Tr θ − 1

4π2
Tr

2∧
θ − i

8π3
Tr

3∧
θ + . . . ,

and express these in terms of the polynomials given. The one needed for c3 is

Tr
3∧
θ =

∑
i<j<k

λiλjλk ,

where λ are the eigenvalues of θ. In terms of the same, Tr θ =
∑

i λi, so

(Tr θ)3 = (
∑
i

λi)
3 =

∑
i

λ3i + 3
∑
i ̸=j

λiλ
2
j +

∑
i ̸=j,j ̸=k,k ̸=i

λiλjλk ,

of which the �rst term is OK, the second one we reexpress as∑
i ̸=j

λjλ
2
j =

∑
ij

λiλ
2
j −

∑
i

λ3i ,

67



and the third one, ∑
i ̸=j,j ̸=k,k ̸=i

λiλjλk = 6
∑
i<j<k

λiλjλk ,

so (∑
i

λi

)3

= −2
∑
i

λ3i + 3
∑
i

λi
∑
j

λ2j + 6
∑
i<j<k

λiλjλk ,

= −2Tr θ3 + 3Tr θTr θ2 + 6Tr
3∧
θ ,

or, solved for
∧3 θ,

Tr
3∧
θ =

1

6

[
2Tr θ3 − 3Tr θTr θ2 + (Tr θ)3

]
,

and now substituting the form θ, replacing powers with wedge products,

c3 = −
i

8π3
Tr

3∧
θ = − i

48π3
[2 Tr θ ∧ θ ∧ θ − 3Tr θ ∧ Tr θ ∧ θ + Tr θ ∧ Tr θ ∧ Tr θ] .

Problem 22.2(1) Similarly to the case of SU(n) in Sec. 22.2c, the special orthogonal group
consists of matrices

SO(n) = {O ∈ Rn×n| detO = 1, OTO = I} ,

and the isotropy subgroup of the point (1, 0, . . . , 0)T is the matrices(
1 0
0 O′

)
, O′ ∈ SO(n− 1) ,

therefore Sn−1 = SO(n)/SO(n − 1), so SO(n) is a principal SO(n − 1) bundle over Sn−1. For
n = 1, SO(1) = {1}, which is connected. SO(2) is a circle, again, connected. From here,
induction follows.

Problem 22.2(2) We intend to whow that if M is connected, and not orientable, then FM
is connected. Let p1,2 be two points in FM , C a curve connecting π(p1) and π(p2). This curve
can be lifted, and its endpoint either has the same orientation as p2 in the frame bundle, or the
opposite. If the opposite, compose the curve with a closed curve starting and ending at π(p1)
along which an orientation is reversed.

Problem 22.2(3) SU(1) is a single point. All higher dimensional special unitary groups are
�ber bundles over S2n−1, which is simply connected for n > 1, with a �ber of SU(n − 1), so
thm. (22.23) provides the induction step.

Problem 22.3(1) Sard's theorem (1.14) states that almost all values of f are regular values,
i.e., the derivative is onto. This is not possible, as the rank is maximum k, so the whole image
is �amost nowhere�.
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Problem 22.3(2) Let us consider the �rst line of eq. (22.26) �rst,

0→ Zk → Ck
∂→ Bk−1 → 0 .

The �st exactness is that ker i = 0 when embedding closed chains into all chains. This is trivial.
The second one, is that the kernel of ∂ consists of closed chains, which is so by de�nition. The
third one is that the imaga of the mapping δ is Bk−1, again, by de�nition.

The second line of eq. (22.26) is

0→ Bk → Zk → Hk → 0 ,

in which case the �rst exactness means that Bk are mapped into Zk by the injection. This is
so by de�nition, Zk is the space of all closed chains, Zk are boundaries, ad equality means here
that the same simplexes are in two chains with the same coe�cients. The second exactness
means that when Zk is mapped into Hk = Zk/Bk, the kernel is Bk, which is so by de�nition of
a factor space. The third one again holds by the de�ntion of a factor space.

(i) In the compact case, one may work with simplicial compexes in stead of singular ones.
In this case, all spaces are �nite dimensional, and ck = dimCk is the dimension of the space of
closed chains, bk is the Betti number, and βk the dimension of the space of boundaries. In this
case, as Hk = Zk/Bk, so bk = zk − βk, so ck − bk = ck − zk + βk. βk−1 is the dimension of the
space of k−1 dimensional boundaries, that is ck−zk, as ker ∂ = Zk, and dim Im ∂+dimker ∂ =
dimCk = ck, i.e., βk−1 + zk = ck.

(ii) For Sn, we have b0 = bn = 1 and the rest 0, so for n even, χ(S2k) = 2 and χ(S2k+1) = 0.
For the projective spaces RP n, b0 = 1 and for n odd bn = 1, 0 otherwise, so χ(RP 2k+1) = 0
and χ(RP 2k) = 1. This is in accord with the fact that the spere covers the projective space
twice. The homology groups of the Klein bottle K were discussed in sec. 13.3b, b0 = 1, b1 = 1,
so χ(K) = 0.

(iii) For a closed orientable manifold, Poincaré duality [see Problem 14.2(3)] leads to bk =
bn−k, so χ =

∑n
k=0(−1)kbk =

∑n
k=0(−1)kbn−k = (−1)n

∑n
k=0(−1)n−kbn−k = (−1)nχ, so if n is

odd, χ = 0.
If the manifold is non-orientable, then there is a 2-sheeted orientable cover. The triangu-

lation can be lifted, so the numbers of edges, vertices, etc., are multiplied by the number of
sheets, therefore for a 2-sheeted cover, χ(covering space) = 2χ(covered space). If the former
vanishes, so does the latter.

Problem 22.3(3) (i) We shall show that the composition of all successive pairs of homomor-
phisms is trivial.

� To Hp(A): any class in Hp+1(M ;A) is of the form cp + ∂mp+1 + ap, and so its boundary
is ∂cp + ∂ap = ∂(cp + ap). A form that is the result of the inclusion of Hp(M), i.e., one
that has no boundary, so ∂cp = 0, yielding a boundary (i.e., trivial class) ∂ap in Hp(A).

� To Hp(M): any boundary in Hp(A) is also a boundary in Hp(M).

� To Hp(M ;A): anything that is a class on A is by de�nition trivial in Hp(M ;A).

(ii) We shall show that there is not more in the kernels.

� In Hp(A): the kernel of ∂ is all of chains on A. If a chain Z closes on A, it also closes on
M , and anything in Hp+1(M ;A homologous to it is of the form z′ = z + ∂m+ a, for which
to close on A, a = ∂a′ must hold. In this case, it is clearly in Hp(M) as well.
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� In Hp(M): any chain that vanishes in Hp(M) is a boundary, i.e., it closes on M . The
image of ∂ in Hp(A) are chains on A that only close in M but not on A, so these agree.

� In Hp(M ;A), the kernel of the mapping from Hp(M) are classes that di�er from a bound-
ary by fomething on A. That is the image of the inclusion of Hp(A) in Hp(M).

(iii) The homology classes of Sn are H0(S
n) = G = Hn(S

n), and the rest vanishes. For the
ball, H0(B

n) = G, and all others vanish. Using the exact sequence in the case · · · → Hp(B
n)→

Hp(B
n, Sn) → Hp−1(S

n) → Hp−1(B
n) we see that 0 → Hp(B

n, Sn) → Hp−1(S
n) → 0 is exact,

so as in sec. 22.3c, due to 0 being in the �rst position, the second arrow is 1:1, soHp(B
n, Sn) = 0,

p ̸= n, and Hn(B
n, Sn) = G. The generator of Hn(B, S) is the ball itself.

Problem 22.4(1) We wish to show that π3SU(n) = π3SU(2) = Z for n ≥ 2. We use the
�bering SU(n− 1)→ SU(n)→ S2n−1 to obtain

· · · → π4S
2n−1 → π3SU(n− 1)→ π3SU(n)→ π3S

2n−1 ∂→ π2SU(n− 1)→ . . . .

In the cse of n = 2 we know that π3SU(2) = Z. For n > 2, π3S
2n−1 = 0, so we have the exact

sequence as part of the above one,

0→ π3SU(n− 1)→ π3SU(n)→ 0 ,

which provides the induction step.

Problem 22.4(2) The symmetric space relation yields the �bration SO(n− 1)→ SO(n)→
Sn−1, so the exact homotopy sequence from thm. (22.27) is

π2S
n−1 → π1SO(n− 1)→ π1SO(n)→ π1S

n−1 → 1 .

For n = 3, the result is known. For n > 3, π2S
n−1 = 1, and also π1S

n−1 = 1, so we have the
exact sequence

1→ π1SO(n− 1)→ π1SO(n)→ 1 ,

which shows that the two groups above are isomorphic.

Problem 22.4(3) The exact sequence in this case is

· · · → πk(F )→ πkM̄ → πkM → πk−1F → . . .

· · · → π2F → π2M̄ → π2M → π1F → π1M̄ → π1M ,

and the �ber F is a discrete set of points. The homotopy group of the discrete set of points is
trivial, so the sequence breaks up into

0→ πkM̄ → πkM → 0 ,

for k > 0, which shows that π∗ : πkM̄ → πkM is an isomorphism, and the last one,

1→ π1M̄ → π1M ,

which shows that π∗ : π1M̄ → π1M is 1:1.
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Problem 22.5(1) We proceed as in sec. 22.5b. We take a triangulation ofMn, in such a way
that all simplexes lie in a local trivialisation patch, i.e., over any simplex ∆, T0M ≈ ∆× Sn−1.
We need to construct a unit vector �eld. Over each simplex ∆, this is equivalent to a mapping
f∆ : ∆→ ∆× Sn−1, x→ (x, g(x)).

To de�ne the section over each 0-simplex (vertex), we arbitrarily choose a point.
To de�ne the section over 1-simplexes, we have two values at the endpoints, and as Sn−1 is

path-connected, there exists a curve connecting the endpoints.
To de�ne the section over 2-simplexes ∆2, we need to extend a mapping on the boundary,

∂∆2, consisting of 1-simplexes, to the interior of ∆2. This is possible according to the extension
theorem (22.17) if the mapping of the boundary, ∂∆2 → Sn−1 is homotopic to a point, which
is always so if n ≥ 3.

To de�ne the section over k-simplexes, one similarly needs to extend a mapping from ∂∆k

to ∆k, again, possible of the mapping is homotopic to a point, which is always so if k < n, as in
that case the image of ∂∆k is always homotopic to a point in Sn−1. We see that the obstruction
arises at the level k = n.

At the level k = n, we see that the vector �eld can be extended everywhere with the possible
exception of discrete points, by cutting out balls around the baricentres of the k-simplexes.

If a vector �eld exists that has no singularities, then the sum of the indices must vanish. On
the other hand, the sum of indices is independent of the vector �eld. Accoding Hopf's theorem,
the sum of indices is the Euler characteristic.

Problem 22.5(2) We proceed by extending a section from triangulations. The unit normal
bundle is an S2 bundle over V . The section is build up on a skeleton, by choosing arbitrarily on
0-simplexes of a triangulation of V , extending to 1-simplexes and then to two-simplexes. That
these are possible depends on the path-connectedness of the �ber and on its �rst homotopy
group, as for a two-simplex ∆2, the mapping ∂∆2 → S2 must be homotopic to a point in order
that the extension exists. As π1S

2 = 1, this always holds.
If the surface V is embedded in M4, the unit normal bundle is an S1-bundle. In this case

the extension is possible with the exception of a �nite set of points, and the indices must add
up to 0. This is the same scenario as in the previous problem, and in this case, the Euler
characteristic can be expressed with the integral of the �rst Chern form c1 = iθ/(2π) over V .

TODO/NOTES

� Problem 2.8(2): probably not the solution Frankel thought of.

� Problem 11.2(2): I think what is needed here is not only the torsionlessness of the connec-
tion, eq. (9.17) but the de�nition (8.32) of Christo�el symbols. The covariant derivative of
the metric only vanishes if the connection is metric compatible (Levi-Civitá connection).

� In Problem 17.2(2), C ∪ C ′ is not a subgroup, but it generates one, and that is one we
factorise with.

� In Problem 20.1(3), in Clairaut's relation, I have replaced y by f(x), for clarity. If we
used x, y, z coordinates in 3-space, and considered the points of the surface of revolution
in thes, the original form wouldn't be correct.
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� In Problem 20.3(1): usually, in convex combinations, only positive a is allowed. This here
is an a�ne combination.

� In problem 20.5(1), a factor of −iq is missing in the book in the formula expressing B2

with A1. Also, a −iqϕdt term is missing from the commutator in ∇ ∗ F .

� In Problem 21.3(5), there is a typo. The maximal L is −(n− 1)/h = (n− 1)/|h|.
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