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These are solutions to problems in Ref. [I].

1 Manifolds, tensors, and exterior forms

1 Manifolds and vector fields
Problem 1.1(1) The locus 2? + y? — 2% = ¢ in R? for ¢ <,=,> 0:

e For ¢ < 0: Can reparametrise as z = ++/22 + y? — ¢. A smooth manifold of two compo-
nents: a two-sheeted hyperboloid.

e For # = 0: this is a cone, z = /22 + y2. Union of a manifold and {0}. If we omit the

origin, we obtain a (non-connected) manifold.

e For ¢ > 0: 22 +y? = ¢+ 2%, can be parametrised as (x,y) = Vc+ 22(cosf,sind), a
manifold: a one-sheeted hyperboloid.

Problem 1.1(2) SO(n) is a submanifold of R3*3, and a zero of one function R — RTR — 1,
into Sym™"/2 the set of symmetric n x n matrices, therefore a submanifold of dimension
n? —n(n+1)/2 = n(n —1)/2. As (det R)? = det RTR = 1, the determinant condition only
selects one component.

Problem 1.1(3) Yes, as det(R+4dr) = det R(14+R6r) = (det R) Tr r, the derivative of the
determinant is D det[R] = (det R) Tr, which, restricted to SL(n) is the trace, a linear mapping
of rank 1, therefore GL(n) is an n? — 1 dimensional submanifold of R™*™.

Problem 1.1(4) The x component of the cross product is 0,F0,G — 0,F0,G. If this is non-
vanishing, we can solve for dy/dx and dz/dx for a curve z, y(x), z(z) locally from the equations:
their derivatives are 0, F + 0,Fdy/dx + 0,Fdz/dz = 0 and 0,G + 0,Gdy/dx + 0,Gdz/dx = 0,
expressed with the partial derivatives d,F and 0,G.

Problem 1.2(1) Let U, be those lines that do not lie in the yz plane. These can be param-
eterised as (y/z,z/x). Similarly, define U,, U,. A line in U, is then coordinatised as ' = y/z,
22 = z/x, [\, A\x!, A\x?]. The same line has coordinates y' = x/y = 1/, y* = z/y = 2* /2.
Differentiable on the intersection. Similarly for the other transition functions.



Problem 1.2(2) Let R™! > (¢1,...,€"), and a line in it is [A¢Y, ..., A€?] for A € R. Let
U; = {&" # 0}. Coordinates: & /€' i # j. Transition function for two as above, e.g., let the
coordinates be z!,... 2" ! for U; and y',...,y" ! for U;. Then a line in C" is given as ¥ = \zF
(k < 1), & = e (k> 4) and €& = ), and then y* = 2¢/27 for ¢ < 4, j, differentiable. The
formula is similar for other values for ¢, indices are shifted.

Problem 1.2(3) Same. CP! is the Riemann sphere.

Problem 1.3(1) It is coordinate system independent. If 2 are coorinates, so are y* = ax’ for
some 0 # a € R, yielding in ||X||2 = || X||2/o?, proving that the expression is not coordinate
independent.

Problem 1.3(2) The two equatiorial circles, where the Jacobian becomes rank 1.

Problem 1.3(3) If f. is not onto to R, it must vanish (as it is a number). On the other
hand, f, is nothing but the restriction of the gradient to the tangent manifold, i.e., at a point
r e M,

foo : TeM = R, fupv = df(z + vt) [dt|;—g = > _0'0;f(x),

and

i.e., for x to be a critical point, the position vector must be orthogonal to all v in the tangent
space (which is the definition of being orthogonal to the submanifold).

Problem 1.4(1) the solution to the differential equation is obtained as dz/x? = dt, i.e.,
—1/z =t —to, or z(t) = —1/(t — ty), and solvind the initial condition, x(0) = 1/ty = p yields
®,(t) = —1/(t —1/p), which is defined for —oo < ¢ < 1/p, or, in the case of 1/2 < z < 3/2, the
largest € is 2/3.

Problem 1.4(2) The transition function is w = 1/z, and therefore v = —1/2%2 = —w?. The
integral curves are w(t) = 1/(t — 1/wy) = wo/(wet — 1). The point wy = 0 is a singular point,
(I)t(’wo = O) =0.

2 Tensors and exterior forms

Problem 2.1(1) > a}vi = S ijk (0, /0x])aY (Oxf J0x, f = > a{'vf;, the Jacobian
matrix drops out. In the case of the two vectors, v and w, the Jacobian components would
remain in the sum (quadratically), the expression would not be coordinate invariant (unless the
two coordinate systems are related to each other by an orthogonal matrix).

Problem 2.1(2) Using the chain rule, 0, = sin ) cos ¢, +sin 9 sin ¢d,+cos 99, etc., yielding
grr =1, gg9 = r* and Jpp = r2sin® 1, and all other components vanish.

The gradient vector components are calculated by raising the indices of the differential
by using the inverse metric, i.e., (Vf)" = 0f/or, (Vf)? = (1/r*)0f/0V, and (Vf)? =
(1/r%/sin® 9 f |02,



The primed unit vectors are €; = d;/4/g;j. In the usual formalism for orthonormal curvi-
linear coordinates, we denote h? = g;;, and componets of th gradient are (1/h;)(0f/dz").

Problem 2.3(1) For the push-forward of any vector v = > v'9/dz", the following holds,
Fov =3, v 0y /02")(0/0y?). Similarly, for w = 37 w/(0/dy’), Gow = 3, wi (92" /dy) -
(0/02%). Applying this to w = F,v and comparing that to applying G o F, and calculating its
derivative using the chain rule yields the same.

For the second part of the excercise: da’ is defined by the relation dz*(9/027) = &;. Now
let us consider F*dy’. (F*dy?)(0/0z") = dyf F,(0/0x%) = dy? S (0y*/02")(0/0y*) = dy* /0.
Proceed similarly to G*dy’, and then compare with chain rule.

Problem 2.3(2) Let us first consider (i). Upon changing coordinates on M from ¢ to ¢/,
there is a change of coordinates on T'M from ¢,q to ¢,¢. Using the usual formula for the
transformation of a vector in T'N, there N = T'M, we get

o a¢7 & a¢i
o7 2 (aqf 0q7 " g aq‘w) |

To obtain the Jacobian components in the second term in the brackets, let us remember the
transformation formula of vectors, applied to a vector Yy, ¢'0/dq" (i.e., a point in N = T'M):

q/] o aq,] 3
81 ’

and calculating the second derivative yields
aq] 62 15 )
Z R
0q'0q
As for (ii), in another coordinate system

dq7 0 ¢ 2 (097 0 9¢7 o
Sia 2 (aq 007 " 0g aqw) Zaq'k (aqf og7 " 0q 0 )

%

and from (i), we see, that this is not well-defined globally: the first term in the brackets

together with the Jacobian would yield the same expression in the primed coodinates as the

one we started with in the unprimed ones, and the second term is additional and nonzero.
Similarly, for (iii),

) 82 11 ) a q/ j o
Z q Z /k J l J 7 515 ’
8(1 dq o aq 8(1 0q dq

% ijk

and in this case, the Jacobian components are cancelled from the second term and the pre-factor,
yielding the same expression as the one we started with (but now in primed coordinates), and
the first one is extra (in addition, we could express ¢! in the new coordinates).

Problem 2.4(1) Compute: a® (v, w) = a(v)B(w) = a(v R0k) B(wdy) = v*wla(0,)B(0 ) =
vPwba;b;dxt (0y)da? (0y) = a;bpda’ (v*0)) 2 (w'0y) = a;b;dxi@x? (vF Oy, w'y) = a;b;dri @) (v, w
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Problem 2.4(2) TIn a new (primed) basis, the matrix of the transformation is A = JAJ !
where J'; = ;2" is the Jacobian. Using the cyclic property of the trace, J is cancelled. On
the other hand, for a covariant tensor, J~'J 7 remains in the trace.

Problem 2.4(3) (i) transform to a new coordinate system, denoted by primes on the co-
ordinates, using the known transformation rules of the covariant tensor and the contravariant
vector,

,  0xd oxt 92t . 01
e = G e it = I
which is the transformation rule for a covector.
(ii) On the other hand,
; ax”vk = O 4 oF axe. e :
oxk J 0x'7 0ztOxk

which is only agrees with 8;«:” if the two coordinate systems are related by a linear transfor-
mation.
(iii) The third quantity does not even have the indices aligned right.

Problem 2.4(4) (i) The series expandion to quadratic order is here 27" = ¢;;(0)¢'¢’ (any
term in the expansion of g;; would be multiplied by a ¢, yielding a term higher than quadratic),
and V = V(0)+9V(0)/9q'q" +1/20*V/0q'0¢’ "¢’ , and the fact that ¢ = ¢ = 0 is an equilibrium
yvields OV (0)/0q" = 0, yielding the desired result.

(ii) Only substitution is necessary.

(iii) The Lagrangian of the double pendulum is L = T — V with T = 1/2m,(3(6)? +
1/2ma[02(0)2 + 02(9)? 4 20105 cos(0 — ¢)0¢] and V' = —mygly cos — mag(ly cos O + Cy cos ).
Substitution and derivation.

Problem 2.5(1) Evaluate both sides on e;. As o/(e;) = §%, we have

oles) =Y ale)d).

1
=

Due to the anti-symmetry of «, this is the expected result. Only those terms contribute to the
sum, where J is a permutation of A, which is 0 if there are repeated indices in J, and exactly

one term otherwise (when A is the same as J sorted), and that term is the correct value.

Problem 2.5(2) According to Eq. (2.43),

(@A Bk =Y =06 asbic =D > 6" apbpn -
K J
- =

¢ m<n

As a result, £, m,n must be a permutation of 7, j, k. These are with positive parity, ¢, j, k, j, k, 1,
k.1, 7, and with negative, k, 5,4, 7,4, k, and i, k,j. In the latter two, the sign can be changed
by exchanging the indices of b, yielding i, 5, k, 7, k.7, k,2,5 and k,4,7, j,k,t, i,5, k. We now
take into account that summation is only over m < n, i.e., when the indices of b are also in
ascending order. As a result, only one of 4, j, k and ¢, k, j; 7, k,7 and j,4, k; and k,4, 7 and k, j,4
are in the original sum.



Problem 2.5(3) As in the previous solution,
(A B)123 = a1bas + agbs1 + azbiz = arby + asbs + azbs = - 3,

denoting the components of 5 as by = baz, by = b3y, by = bys.
Similarly, as (a A )12 = a1by — asgby, etc., we get a A S = (a x ) -dS

aANBAp=(axp) p.
Problem 2.6(1) Any 3-form can be written as =3, ., bijredz’ A - - - Adz®. For any such

1, 7, k, they have to assume three different values, and thus a forth one is missing, which can be
assigned to the component,

B = bida? Adzd A da? — bydzt A da® A dzt 4 byda! A da? A da? — bydat Ada? Ada®.

Now using in all terms d(fdz® A --- Ada®) = df Adaz® A -+ AdaF, the fact that df = 9;fda?,
and that if in one wedge product any term occurs twice, the product is zero, yields

dB = Oibydzt Adz? Ada? Adad A dat — Oubeda® A dat A da® A da?
+ O3bgda® A dat A da® A dz? — Oybyda A dat A da? A da?

= (Z &bi) da' Ada? Ada? Adz? Adat

Note, that in each summand, it is not possible to get rid of the signs by rearrangeing the terms
by moving the indices into ascending order, as that would be an even permutation.
We conjecture, that the expression for dimension n is

B=> b(=1)7da" T A Ade” Adat A AT
r=1
where 0 = 0 for odd and o = 1 for even n.

Problem 2.7(1) We want to prove F*(aAS) = (F*a) A (F*(3). To do this, we shall evaluate
both on a tuple of vectors, using (2.43),

(F*(a A B)) (vi) = (@ AB)(Fuvy) = Y 61K a(Fov)B(Fovie) = ) 675 (Fa)(v) (F7B) (Vi)

K,J K,J
- =5
= ((Fa) AN (F7B)) (vi).
Problem 2.7(2) S =Db-dS =bdyAdz+...,soits pull-back in the u, v coordinates is
8 = byi*(dy Ad2) + . ..

where by = by(x(u,v),y(u,v), z(u,v)), etc. We need now the pull-back of dy, etc., i*dy =
d(y oi) = (y/ou)du + (Oy/Jv)dv (note that y o u = y(u,v)), yielding

i*f = by ((Oy/0u)(0z/0v) — (0y/Ov)(0z/0u))du A dv + . ..

and it is easy to recognise that the coeficient of by in this first term is the first (z) component of
n = x, X X, times du A dv. The terms not written out yield by times the second, and b3 times
the third components (i.e., the remaining terms of the dot product), all multiplied by du A dv.
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Problem 2.8(1) We follow the reasoning used for RP? in the text. For any dimension n,
RP" is the n-sphere in R"*! with the antipodal points identified.

For a basis e, ey, ..., e, in T,RP" to be positively oriented, N, ey, e, ..., e, must be posi-
tively oriented in R™*!. Let us consider this at the north pole.

Transporting this basis along a great circle starting in the direction of e;, we obtain a basis
fi = —ei, fy =e,y,...,f, = e, at the south pole.

Upon identification, the great circle connecting the north and the south poles becomes a
closed curve, and the basis represented by fi,...,f, at the south pole the same as the one
represented by —f; = e, —f; = —e,, ..., —f, = —e, at the north pole, which is of the opposite
orientation as ey, ..., e, if n is even. Thus, for n even, there exists a closed curve, along which
a basis is transported reversing the orientation, consequently, RP" is not orientable for n even.

Problem 2.8(2) There is something wrong with this exercise. A normal is not defined
without a metric, so we shall assume that there is a metric on W.

Anyway, let us try to prove that if M is orientable, there is a non-zero transversal vector
field (i.e., it is two-sided). As M is oriented, it is possible to choose a basis vq,..., v, in its
tangent space with positive orientation, smoothly in each coordinate patch. At each point, one
can extend this to a basis in the tangent space of W, so that there vy,...,v,, w is a basis that
is positively oriented, and w is a unit normal to M.

Problem 2.8(3) In Problem 2.1(2) we have computed the metric g.. = 1, gg9 = 7* and
gpp = r?sin® 9. It was shown in the text that vol = 0,/gdr A d¥ A dp = or?sinddr A dd A d,
where o is the orientation, usually assumed to be positive for x,y, z and thus for r, 9, ¢.

Problem 2.10(1) Verify the transformation law! In a new coodinate system,

1% 2 0 V4
iy 0T Ox O gy,
e T gk Qake Ot Qg Bt

and using '

oz’ ozt

ork o't I
upon contaction, the transformation rule of the components of a tensor of the type (p—1,¢—1)
are obtained.

Problem 2.10(2) To calculate the components of iy, let us remember that
o= Z Oéil...ipdxil A Ada'
i< <ip

and
v =0'0;,

and dz’(9;) = 8}, yielding

Tyt = E E vjozilmipiajdx“ A Adxi
J

i<



On the other hand, by evaluating on the multi-vector 0 7 it is shown easily, that
iajdm“ Adz2 A - Ada'r = 5;.1d3:i2 A Ada®

yielding
Ty = Z vjaji2<...ipdxi2 A Adte
in < <ip
The other forms of the theorem are simply shown by reading off components, and changing
between index and multi-index formalism.

Problem 2.10(3) df = 0;fdz’. For the divergence, we need the corresponding vector
(gradf) = ¢“0;f0;, where we have ¢"" = 1, ¢"7 = 1/r% and ¢¥* = 1/(r*sin®9), i.e., the

components are
1

r2sin% 9

with this, the components of igraasvol is /g9 0; f

1
anvﬁaﬁf7 aapf7

1 1 1
r?sin 90, f , r sinﬁﬁ&gf 12 sint———=—0,f = 0, f,sin¥0y f , —=0,f,

r2sin? 9 sin 1
and, as /g = r?sind, we get, as in Eq. (2.89), taking into account that the metric is diagonal

L %(sin 19&9]”) + L 02f .
T

25in%60 %

1
V2f = 0,0, f) +

r2sin ¥

Problem 2.10(4) (i) According to the dictionary 2.10, the form corresponding to gradf is
df, so the same in form language is d(fg) = (df)g + fdg, which is just the property of d being
a derivation.
(ii) Again, f simply multiplies igvol, so the Leibniz rule can be used for the exterior deriva-
tive of figvol, i.e.,
d(figvol) = df Aigvol + fdigvol,

and the first term is a 3-form 9; fda' A /g(B'da? Ada® +-b*da® Ada® + B*da! Ada?) = 9, f B'vol =
(gradf, B), and the other term is just fdivBvol.

(iii) Here, the Leibniz rule is applied to fa, where o = (A, ). Using d(fa) = df Aa+ fda
and remembering that the result is 7.4 vol, the desired result is obtained of one shows df Aa =
tgradfxaVol. This is easily done in component notation.

(iv) Denoting the lowered-index version of A and B with o and f, respectively, we get
a N B = iaxvol. On the other hand icxpvol = —igipvol. With these, we shall use the

identity iy (E A C) = (iv€) A ¢+ (—=1)™KEC A i € rule,

—a A (B Nigipvol) = —a A [(icf) Aipvol — ic(B A ipvol)] = —a A [(BC)ipvol — (BD)icvol]
= [-(BC)(AD) + (BD)(AC)]vol.

In the last step we used that & A iyvol = (xv)vol. This results in

(A x B,C x D) = (AC)(BD) — (AD)(BC).



Problem 2.10(5) We know that it is —iyigvol, so we use the expression of the volume form,
vol = \/§Zz‘<j<k ekdr AdzINdzF, and v = v'9;, B = B™9,,, soigvol = \/g ), Zi7j<k B™e€;j,-
d2t(0,,)dz? Adxk = VIBejda? A da*. Continuing, v =" ©™0,, so

1,7<k

iyigvol = \/EZ o™ Z Bjeijkdxj(ﬁm)dxk =9 Z UjBiel-jkda:k )
m ijk ik
yielding
lyxBVol = Z \/EviBj(fijkde’k )

i7j7k“

3 Integration of differential forms

Problem 3.1(1) F*a = 0 if for an arbitrary basis at ug, (F*a)(vy,...,v,) = 0. If the rank
of F'is lower than p at ug, that means that the vectors Fyvy, ..., Fi(v), are linearly dependent.
Firstly,

(F*a)(vi,...,vp) = a(Fuvy,...,vp),
Secondly, if the vectors are linearly dependent, then there is a 1 < k& < p, that F,v, =
Zi#k CZ‘F*Vi, SO

a(Fuvy, ..., vp) =« (F*Vl,...,ZCiF*Vi,...,Vp> :ZCiOZ(F*V17~--;Vi>~--7Vp) =0,

itk itk

as in the last term, F,v; appears twice among the variables of «, and « is fully anti-symmetric.

Problem 3.1(2) In Eq. (3.13), the integration of a vector over a surface was so defined, that
its dot product with Ninvol(dx/du', 0x/0u?) is integrated over du'du?; i.e.,

n = Ninvol < Ox 0x )

dul’ du?

where N is such a unit vector that N, 9x/du', 0x/0u? form a right-handed system. The scalar
product with a vector, according to the dictionary, is equivalent to the appliction of a one-form,
and that one form can be read off in this case, is

which, is the 1-form corresponding to a cross product, with the components
Oz7 Ox*
kG0l g2

which yields the formula for the components of n. Here we have used the fact that the coordi-
nates x are Cartesian. The rest is just substitution.

In the case 2! = u!, 22 = v?, 23 = f(u',u?), we get
of of
=——-0, — =505+ O:
aul 1 auz 2+ 3



and |In||* = 1+ (f.)* + (f12)*

In the case when the surface is given as F'(z,y,z) = 0, and it is assumed that this can
be solved for z, all one needs to do is to assume that a function z = f(x,y) exist, for which
F(z,y, f(z,y)) = 0, and use that in the previous case. Deriving this relation by = and y, yields
Of/0x = —(0F/0x)/(0F/0z) and Of /0y = —(0F/0y)/(0F/0z), respectively. Note, that the
normal is parallel to gradF,

= dF.
TR

Problem 3.1(3) (i) By the definition, Ay - B = vol(Ay, Ay, ..., A,_1). The volume form is
totally anti-symmetric, and two of its variables are equal, therefore, the r.h.s. vanishes.

(ii) The volume element is defined in such a way that an n — 1-form integrated on the
parameterized hypersurface yields the same result, as the corresponding vector multiplied the
normal vector times the volume element. The steps of (3.13) may be repeated with more u'’s,
arriving at the expression for dS™™!, yielding

<1’l, > = V01(8X/6u1, s 78X/aun_17 ) ?

which is the co-vector corresponding to n in the standard metric of R™.
(iii) i(v) always inserts the vector to the first variable of a form.
(iv) Insertion is always contaction with the first index.
(v) Follow the steps of the previous derivation. All steps remain valid until the volume form
is used, up to ‘ A
i1 in—1
<n7 '>j = \/geil---in—lj %Zl T Zznl - \/EDJ' 3

and this is a covector, so its norm is calulated using the metric, g%.

Problem 3.3(1) In 3d, for p=2, what we have is a 2 dimensional surface A, and

/dw:/w
A A

w = w;da’,

where w is a 1-form, written in 3d as

and then dw = (Ojwy — Oowy)da! A da? + -+ = iyxyvol, where w = (v,-), and the integral of
the one-form itself over the boundary is

d
/w:/w(—x)dt:/ v -ds,
oA de oA

/va:/ v-ds,
A DA

which is the usual form of Stokes’ theorem.
The p = 3 case is the case when w is the 2-form

yielding the more usual form

w = widz? A da? 4+ woda® A dat + wyda! A da?,



and its exterior derivative is

dw = Z Oiw; = (Vv)vol

where 7, vol = w, and the left hand side is the integral of the exterior derivative over a volume,

/dw:/v-vvol,
v v

and the right hand side is the surface of a 2-form, which may be written as

/ z'vvol:/ vol (V,a—’i,a—’;) duldu2:/ v-dS,
)% )% du'” du A

yielding the usual form of Gauss’ theorem,

/V(V~V):/8VV'dS.

Problem 3.3(2) The case of p = 2 corresponds to the integral of a one-form over a closed

line,
/ w = / vds
v v

where the vector v corresponds to the one-form via the metric, and the vector measure ds
corresponds, similarly, to (0x/0u)du.

The other side of the equation is the integral of a 2-form dw = (Jw; — 9;w;)dz* Ada?, which
may be written as vol(curlv, -, -), integrated over a surface, so the integral may be written as

/ curlvdX,
1%

where d¥ = vol(-, -, 9x/du', Ox/0u?)du'du? the indices of which may be raised using the metric
to get dX. In this case, the curl may be defined as a 2-index contravariant tensor which arises
by raising the indices of (1/2)iantisymmvevvol. In coordinate form,

/ EEijk@(akﬂg - 8zvk)daij s dO'Z'j = eijkg——dulduz .
v 2 ut Ju
I think that in this case the “vectorial” notation becomes quite cumbersome, showcasing the
advantages of using forms.

The case of p = 3 involves the integral of a 3-form dw over a 3-volume, and w over its
2-dimensional boundary. A 2-form may be written as w = ipvol, where A is an anti-symmetric
two index (contravariant) tensor. Its external derivative is then

dw = diavol = 2igavol,

where (VA)? = 9;AY. The integral thereof can be considered as the scalar product of VA and
a vector which corresponds to the covector vol(-, dx/du', dx/du?, dx/Ou?) which is the volume
element of the hypersurface, dS = NdS where N is its normal vector.

The right-hand side can be considered as the integral of iavol over OV, which may equally
be considered, using a parametrisation, as the integral of the twice-contracted product of A
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and vol(-, -, 0x/ut, 0x/0u?)du'du? =: d¥ where dX is the surface-element two-form, or, with
its indices raised by the metric
/ W= A -dX,
av av

/2(V-A)~dV: A-dx.
v oV

The case of p = 4, the integral of a 3-form over a hypersurface, or its exterior derivative
over the 4-volume bounded by a 3-surface yields

/V(V-v)dV:/avv-dS

where dV is the usual integration using the volume form, and dS is the hypersurface element
NdS, where the N is the unit normal vector, and the normal vector n is the vector corresponding
to the 1-form which arises with filling the 2nd, 3rd, and 4th slots of the volume form with
Ox/du', i =1,2,3 and integrating d®u. The derivation is the same (with one more slot in vol)
as the 3d case with p = 2.

yielding

Problem 3.5(1) Magnetic field lines are curves, along which no magnetic force acts on a
moving particle, i.e., let the curve be parametrised as x(s), then v(s) = x(s). The force acting
is f = —i,B. Prescribing f = 0 along the line yields at each parameter value s 2 constaints
on x [it has 3 components, and we know that B(%x,x) = 0 (anti-symmetry of a form)]. There
is also a freedom: reparametrisation, e.g., in an arbitrary metric choosing [|X|| = 1 sets the
parametrisation to line-length in that metric.

In vector notation, the prescription that x x B = 0 determines x up to its magnitude, and
an arbitrary metric may be used to fix that. The resulting curve will not depend on the metric,
only the “velocity” along the curve.

Problem 3.5(2) The top 2-torus is a compact, 2-sided surface in the 3-torus, with no bound-
ary. Applying (3.43) to it thus yields

0x 8

o fL (o5

o LT ot
0x8&

=477 .

// a7

As the surface is time-independent, this yields the desired results.

therefore

4 The Lie derivative

Problem 4.1(1) To obtain in coordinate form the bracket of two vector fields, let us fist note
that for any vector field v and function f, vf = v'0;f, so

(X, Y]f = X(Y[) - Y(X[)
=X(Y'0;f) = Y(X'0,f) = XIY'0:0;f + X?0,Y'O,f =Y X'0;0;f — Y79, X0, f
= (X70;Y" = Y'9;X"0,f = [X,Y]'Oif,
and (4.6) can be read off.
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Problem 4.1(2) In these coordinates, [X, Y]' = X79;Y" — Y79, X", and, as both vectors are
tangent to V', their coordinates for ¢ > p or j > p vanish on V. On one hand, only derivatives
along V are considered, therefore X79;Y* = 0 for ¢ > p, and similarly for X < Y, therefore,
for i > p, [X,Y]* =0, i.e., the bracket is also a tangential vector field.

Problem 4.1(3) The “rectangle” corresponding to the coordinate vector fields is moving from
a point (9, ¢) to (0 + A, p), then to (¥ + A, ¢ + A), then to (9,9 + A), and finally back to
(9, ¢) along coordinate lines. The final point coincides with the initial one, the “rectangle” is
closed.

Now the unit vectors are ey = dy, and e, = (1/sin})d,. Their Lie-bracket is therefore

cos v

mew .

Let us consider the orbits. Let us move in both direction with a parameter value A. The first
movement is along the 9 coordinate line, and as in this case Oy is already a unit vector, the
final point is (¥ + A, ¢). Now we move along the ¢ coordinate line, along the vector e, to
parameter value A. Along the line, ¥ is unchanged, so we may use e, = J,/sin?, i.e., we
may say that we are moving along the vector J, to parameter value 1/sin(d + A)A, to the
point (0 + A, ¢ + A/sin(d + A)). Next we move along the coordinate line §, with parameter
value —A, arriving in (9,9 + A/sin(d + A)), and finally, along the vector e, with parameter
value —A, to (0,0 + (1/sin(d + A) — 1/sin9)A) = (9, p — cos I/ sin? YA?). As it can be read
off, this is moving to parameter value —A? cos?/ sin* ¥ along 0,, or equivalently to parameter
value —A? cos ¥/ sin ) along e, or to parameter value A? along — cos ¥/ sin e, i.e., along the
Lie-bracket computed above.

[9197 ew] ==

Problem 4.2(1) As the Lie-derivative commutes with the exterior derivative,
Lxa = (Lxa;)dz" + a;Ly(dz’) = (Xag)dz" + a;d(Lxa") = (Xa;)da' + a;d(Xa?),
where Xa; = X79;a;, and Xa' = X709,z = X" and dX* = 9;X"da?, yielding
Lx(a;dz") = (X70;a; + a;0,X7)da’

or equivalently (Lxa); = X70;a;+a;0;X’. This needs to be compared with (LxY)* = [X,Y]" =
X99;Y" — Y79, X". Note the sign, and the indices in the second term: the free index there is
not that of X, but of the derivative of the components of X.

Problem 4.2(2) If # is an antiderivation, 8(a A 5) = (6a) A B+ a A (03); similarly, if A is
an antiderivation, A(a A B) = (Aa) A B+ (—=1)Pa A (AB), where « is an arbitrary p-, and 8 an
arbitrary g-form.

Using these properties, assuming # mapping p-forms into p+r forms and A into p+ s-forms,
OA(a A B) = 0((Aa) A B+ (—=1)Pa A (AB)) = (BAa) A B+ (Aa) A OB + (—1)P(0a) A (AB) +
(=D)Pa A (0AB), and AB(a A B) = A((Ba) AB+a A (0B)) = (Ada) A B+ (—1)P1"(0a) A (AB) +
(Aa) A (08) + (—1)Pa A (ABB), and collecting terms yields, taking into account that r is even,

[‘9714](0‘ Aﬁ) - ([Q,A]Oz) AB+aA ([97‘4]6>7

i.e., the commutator is an antiderivation.
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Similarly, assuming A mapping p-forms into p + r-, and B into p + s-forms, AB(a A ) =
A((Ba)AB+(—=1)Pan(Bp)) = (ABa)AB+(—1)PT*(Ba) NAB+(—1)P(Aa) A (BB)+aN(ABp) ,
and BA(aNpB) = B((Aa)AB+(—1)Pan(AB)) = (BAa)AB+(—1)PT"(Aa)A(BS)+(—1)P(Ba)A
(AB) +a A (BAP), and collecting terms yields, taking into account that r and s are both odd,
yields

{A,BHa A B) = ({4, Bla) A B +a A ({4, BYS).

i.e., that the anticommutator is a derivation.

Problem 4.2(3) Let us consider a differential of a function,

Lxiydf =Lx(Y[f) =X(Y[),
and

ivLxdf = (Lxdf)(Y) =Y(X[),
as shown in the Proof of Theorem (4.20), so Theorem (4.24) is shown for differentials. Next,
Lxiy fdg = Lx(fYg) = (X[)(Yg) + [XYy,
and
iyLx fdg = (Lx fdg)(Y) = (Xfdg + fLxdg)(Y) = (Xf)(Yg) + f(Lxdg)(Y)
= (X/)(Yg) + fYXg,

again, yielding the desired result for a linear combination of differentials, thus, one-forms.
As both sides of the equation in Theorem (4.24) are derivations, it is possible to proceed
with induction.

Problem 4.2(4) «a = a;d2’, so da = 3, _ (9 — Ojey)da’ A da’. Evaluated on X and Y
yields
da(X,Y) =) (XY - X7Y")9;q.
i<j
Similarly,

X(a(Y)) = X(a,Y") = X7 (0,0, Y" + ;0,Y"),
and Y (a(X)) = Y7(9;0,Y" + ;0;Y"), so for the difference,
X(a(Y)) = Y((X)) = da(X,Y) + o([X, Y])
is obtained.
Some notes for Sec. 4.3c. A one-parameter family of diffeomorphisms on M is extended to
a flow on R x M. A flow is a one-parameter group of diffeomorphisms. How is this done? The

text only defines it via the derivative vector field, so that let ¢,y be a point in the extended
manifold, then it is written as t, ®;x, and let the derivative of this point be

d d
v(t,y) = &(t,y) = &(t, Oux) = v(t,w(t,x)).
Let us note that the explicit formula for the flow is
i)t(to,y) = (to +1, Cbt0+tq>t_IY) )
or equivalently, )
Dy (to, Prox) = (to + 1, Pyyex) -

It is quite easy to verify that the derivative vector field of this satisfies the condition prescribed
in the text.
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Problem 4.3(1) Let us use the general formula (4.43). To this end, the curve integral is the
integral of a one-form « associated with the vector A, by lowering its index with the metric,

/ a:/ la—a—i-ivdadez'va ,
o) cw Lot

and use the “dictionary” at the end of Sec. 2.10. The first term is obvious, it yields the 0A /Ot
term. The second one, da = ¢y avol, therefore i,da = iyicunavol = —f, where 8 is the
two-form associated with v x curl A, and the last term, i, = v - A, and its exterior derivative
is, of course, the gradient.

Problem 4.3(2) Let a in this case be the two form o = igvol. The LHS is then [[;a.
Again, the first term on the RHS is obvious. The second term, using da = (divB)vol, is
ivda = (div B)iyvol integrated over the surface, i.e., the integral of (divB)v - dS. The third
term is iy« = iyigvol = —vol(v x B, -, ), again yielding the correct term.

Problem 4.3(3) Again, first term is trivial. The second also, the exterior derivative of a
maximal form vanishes. The last one, using i,pvol = piyvol, is d(piyvol) = div(pv)vol.

Problem 4.3(4) Use the solution of Problem 4.3(2), and take into account that div B = 0 (no
magnetic monopoles), use curlE = —9B/0t in the first term, and then the Gauss-Stokes-etc.
theorem.

Problem 4.3(5) (i) Simple calculation in cartesian coordinates, using the results of 4.2(1)
shows that the LHS is . o
(815%' + U]ajVi -+ Vj&,‘?]])dxz

and the RHS )

The last term on the LHS and the first one on the RHS cancel.
(ii) Using the derivation Law of an integral

d
_% V= f °Ev+8ty :/ dGEv-l—@tV)
dt Jew o) A(t)

where A(t) is some surface whose boundary is the curve C(t), 0A(t) = C(t). On the other hand,
using the form of the Euler equations shown in (i), the Lie-derivative is already the exterior
derivative of a form, so its exterior derivative vanishes.
(iii) Using the commutativity of the Lie-derivative with the exterior derivation, (4.20), we
get
Lyrow = Lyyodr = dLy o,

then use the form of the Euler equations shown in (i), and that d*> = 0 to get the desired result.
(iv) The form w? = i,,/,pvol is invariant, £ys,w? = 0, so what we know is that

0=Lyw? = Lx1y/ppvol,

14



and using (4.24), Lx 0 iw/p = Gw/p © Lx + i[x 1w/
0= iw/pofxpvol + i[X7w/p]pV01 .
The first term vanishes because pvol is invariant, therefore the second term must vanish as well,

0=[X w/pl =Lxw/p=Lvso,(w/p).
(v) The integrand in the helicity integral is (v - w)vol = v A w. Let us now use

d
— yAw:/ IX(V/\w):/ [(Lxv) ANw+v A (Lxw)] .
dt Jvq V() V()

The second term vanishes as per (iii). Also dw = 0 as w = dv. We may therefore write that
the derivative equals [using (i)]

:/‘/(t)d{...}Aw+{...}dw:/V(t)d{...}w:/8V(t){...}w:/8‘/(0)@{...}@),

which vanishes, as w is time invariant, ¢;w = w, and w vanishes on 9V (0).

Problem 4.3(6) (i)
0B

Lyi5B = o+ LB =—dé' +i,dB + di,B = —d(&' +i,8%) =0,

where we have used the Maxwell equations dé = —98B /0t and dB = 0. In the bracket, we have
a one-form, to which corresponds the vector E + v x B, the vanishing electromotive intensity.
(ii) Using

d/dt/UV/\@:/UQCX(V/\@):/U(Q[’XV)/\@,

as LxB = 0. Let us now use the Euler equations, Lxv =d{...} —i38/p, to iB corresponds
the vector —v x B, then to i3B A B corresponds —(v x B) - B =0, so what remains is

:/d{...}/\@:/d({...}@): {...}1B=0,
U U U
as B, =0 on oU . We have used dB = 0.

Problem 4.4(1) For 2’ = ¢, we have iy/p,dp; A d¢/ = —dp;0! = —dp;, and for 2" = p;,
igoan+iw = Gg)0p,dp; A dg? = 8idg’ = dq’, and the dp;, d¢* are the coordinate basis 1-forms.

Problem 4.4(2) Asw =} dp; Ad¢,

W= Z dpjl/\dqjl/\~~/\dpjn/\dqj".

J1yeees Jn
As the exterior product is antisymmetric, only those terms constribute where ji,..., 7, are a
permutation of 1,2,...,n. These can be reordered, moving all the dg’s left and in the order of

their indices, and all the dg;s right, and in the order of the indices. Moving the dg’s to the left
of the dp;s needs movint he first one over 1, the second one over 2, etc., the nth over n dps, so
there is a sign of (—1)'™2T"*" = n(n+1)/2. Then the same permutation is applied to the dp;s
and the dg's, so the sign of that drops out. There are n! equal terms, yielding

n(n+1)

Ww'=(=1)"2 nld¢g" A---Adg" Adpy A--- Adp,.
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Problem 4.4(3) Orientation is a way to chart a manifold with coordinate maps such that
each transition function has a Jacobian with positive determinant. Let us consider a chart on
the manifold 7™M that covers it. Then it is possible to flip the orientation of those whose form
Nidz' = &(x)w™ with € < 0. The function & cannot vanish, as that would mean that there the
coordinates are degenerate, therefore, it also cannot change sign.

Problem 4.4(4) We shall use some of the calculations from the solution of Problem 4.4(1).
Let us write X = X'0/9q" + X™9/dq;, and, as w = dp; A d¢’,

ixw = _depz + XH_nqu‘ s

and comparing this with

oH OH _ .
—dH = _é?_pidpi - B dg’,

yields, upon comparison,
i.e., Hamilton’s equations.
Problem 4.4(5) Using Cartan’s theorem (4.23),

Lxw = ixdw + dixw,
where the first term vanishes due to w = d\, and the second one,

dixw = —d(—dH) = 0.
As for the volume form, w™ = A"w, therefore

Lxw" = (LxW)ANWA - Aw+wA (Lxw) A Aw+---=0.

Problem 4.4(6) As the T’s are tangent to Vg, dHT; = 0, so
dH/\O'(N,TQ,. . 7T2n) == (NH)O’(TQ, . 7T2n>;

and the same holds for ¢’. On the other hand, for both dH Ao = £ /n!Aw™ holds, so dHA(c—0”)
vanishes. As a consequence, o and ¢’ must give the same value on any 2n — 1-tuple of vectors
tangent to Vp.

Problem 4.4(7)
VH

——— T, ..
IVH[>
on one hand, and, as dH Ao = +1/nlw™,

VH VH
dH Ty, Toy ) =40l [ ———— To,..., Toy | ,
( AO)(IIVHH?’ S ) e <||VH||2 ? )

dH/\O'( -,T2n):U(T27"'7T2n)

which is invariant, as w, VH/|VH|* and the T’s all are.
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Problem 4.4(8) A = p,d¢' — Hdt, so Q = dA = dp; Adq' — dH A dt, dH = 0H/dq'dq" +
OH /Op;dp' + OH /0tdt and X = X'0/0q" + X0 /0p; + 0/0t, so

ixQ = —X'dp; + X"""d¢' — X'0H/0q¢'dt — X"T"OH /Op;dt + OH/0q'dq" + OH Opidp’ ,

(note that the 0H /0t term does not contribute to Q as dt A dt = 0). In ix€) the coefficients of
all the basis forms dq¢’, dp; and dt must vanish in order for ix) = 0, yielding

dg* , oOH
dil :XZ = y
, dp; , o0H
dq' - L= X =
1 dt oq'’
Hdq' H dp;
dt : 0—a d OH dp

gt dt + Op; dt’
(in the last equation, we have already used X' = d¢*/dt, X" = dp;/dt), and as dH/dt =

(OH/0q")(dq"/dt) + (0H/Op;)(dp;/dt) + OH/Ot, the desired result, dH/dt = OH /0t is obtained
along with Hamilton’s equations.

Problem 4.4(10) Let S denote the surface. The integral is that of the form A = p;dq’ — Hd¢
over the two connected parts of 05, i.e., the integral over the whole is their differecne (due to
opposite induced orientation). So, using the Gauss-Stokes-etc. theorem, the difference equals

to
/dA:/Q.
S S

As the surface is swept out by orbits of X, we may choose one coordinate along C' and the
other as the “time” parameter along the orbits to coordinatise C, therefore

/SQ = /Q(X, Y)drde,

where the two coordinates are 7 and ¢, and the corresponding tangent vectors are X and Y.
As X is the Hamiltonian vector field, ix{2 = 0, therefore the integral vanishes.

Problem 4.4(11) We know that S'(0) = [, Los/0a Where A = p;dg’ — Hdt. The vector
field J = 0z/0a. To calculate the Lie-derivative, we use Cartan’s formula L; =iyod+doi,.
The first term already yields the desired result, we only need to show thatt he second one
vanishes.

Firstly,
~ 0¢'(u, ) O N Opi(u, ) 0 Ot(u,a) 0

oo 0Og; da Op; Oa Ot

Ot(u, o)
oo " O

Using the Newton-Leibniz-Gauss-Stokes theorem,

/ diyA = [i;A]
Co

and the condition for a variation is that J at the boundaries, a and b has neither 9/9q" nor
d/0t components, i.e., there both d¢’/da and Ot/da vanish.

J

SO az
a2 ()
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Problem 4.4(12) Let C(u,«) an arbitrary variation, then S'(0) = [, i,Q. The tangent
vector is

T:8q(oz,t) 8. dp; O +2
ot dq¢* Ot Op; Ot
as the curve is now parameterised by ¢, a.

/ 0 = / 407, 7).,
Co

so that us what needs to be calculated.
0 op; ., . Ot (OH . OH OH 0q' 0H Op;
9 pdq’+— ~dg" + Di | — 5 Tt — P
Oa Oa Oda \ 0¢* op; 0q* Oa Op; O

Inserting T' as well

%( op; 8H>+8pi <8qi 8H>+ ot <3H8_cf 8H8pi>

da\ ot o7) 9 \or " ap) Taa\ogd ot T o ot

i

iJQ: — dpz—i- dt

i) = .
This is integrated over dt from a to b. The variations dq'/Oa, Op;/da and dt/da play the role
of the arbitrary functions in the fundamental theorem of the calculus of variations, therefore,
their coefficients must vanish on Cj. Integrating on this curve, dx /0t may be replaced by dz/dt,
yielding Hamilton’s equations.

Problem 4.4(13) If F were the Hamiltonian, X was the Hamiltonian vector field, for which
this has been shown. To repeat the argument, let & be the flow of X,
d

&[¢;‘tw]$(t) = 0%y [Lx,W]z0) = 0,

as shown in the solution of Problem 4.4(5). Consequently, ®; is canonical.

Now (F,G) is defined as (F,G) = Xg(F) = dF(Xg) = —w(Xp, Xg). With the same
argument (G, F) = —w(Xqg, XFr), and using the antisymmetry of the symplectic form, we
obtain (F,G) = —(G, F).

To obtain the coordinate form, let us calculate

oF . . OF .
dF = —d¢’ dp’
dq’ 1 +8pi b

and w = dp; A dg’, do

oF 0 oF 0 0G 0 0G 0

= . Xg= L
Op; 0¢  Oq' Op; Op; 0¢  Oq' Op;

SO

J0F0G 0F0G O(F,G)
F.G)=dF(Xg) = — — - = ,
(£.6) (Xe) dq' Op;  Opi0¢'  O(¢',pi)
Problem 4.4(14) According to Theorem (4.24),

ixpXeW = Lxpixew — ixgLx,w = Lxpix,w = —Lx, = —d(Lx,.G)

= —d(Xp(G)) = —d(G, F) = d(F,G) .

This shows that the vector associated to d(F,G) is [Xr, Xg]. The sign may be a matter of
definition.

18



5 The Poincaré lemma and potentials

Problem 5.5(1) Let v = a? A dB? the product of a closed form, da = 0, and an exact one,
dS. In this case,
d((=1)’aAB)=(—DPdanpf+aANdf=aAnd,

as da = 0.

Problem 5.5(2) Any such form can be written as 5 = iyvol. Then the closedness of 5 can
be written out as
dp = diyvol = (div v)vol,

i.e., the vector v is divergenceless (source-free). The integrand contains z7b;x = z/v'volyy, =
(ixiyvol)g, the k component of the covector corresponding to the vector —x x v, yielding

1
v = curlw, w = / v(Tx) x (tx)dT.
0

Problem 5.5(3) Let us choose cylindrical coordinates r, ¢, z with the wire along the z axis.
In this case, using the metric g = dr? 4+ r2dy? + dz?2, we obtain the vector B = 2j /1?0 /0y, and
then vol = r2dr A dp A dz, if igvol = —2jdr A dz. This is a closed form, as its components are
constant. Let us now construct a vector potential such that dA = B. An example is —2jrdz,

so that d(—2jr) = —2jdr, dA = d(—2jrdz) = —2jrdr A dz.

Problem 5.5(4) With the metric given in the book, the volume form is
vol = sin® asin? ¥da A dY A dy.

With this,
*8 = igvol = E(a)sin® asin® 9dd A dep,

and of its exterior derivative is thus

d=*&= di [E(a)sin® o] sin® 9da A dd A dyp,
o

so E(a) = Ey/sin* @ must hold in order that this exterior derivative vanishes. The integral
f (@) is a constant o 3-sphere. The 2-form *& is pulled back on this sphere, on which two basis
vectors are 0/0vY and 0/0¢, so the integral is

4
/ %8 = EO/ sin2 9 A dy = — Ey,
S(a) S(a) 3

which must agree with the 47 times the charge, so Ey = 3q. The electric covector is then
obtained by lowering the indices of E = 3¢/sin*«d/0a with the metric, whose «, o component

is 1, yielding
§=—L

3sin” o

da,

and so dé =0 as daa A da = 0.
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Problem 5.5(5) The charge is calculated as

1
q:/pvol:—/d*éz(],
M 4T Jar

using Gauss’s theorem and OM = ().

6 Holonomic and non-holonomic contraints

Problem 6.1(1) The diffeomorphism ® is defined as

Oy = ¢k,tk O"'O<Z51,t1>

where ® 4 is the flow of the vector field X 4. The tangent vector 9/0t 4 is defined as the tangent
vector of the curve ty =t, t, = 0 (B # A) at t = 0, the image of which is ity = t,tp =
0)(0) = ¢ay,(z), of which, the derivative at t4 = 0 is X4, as @4 is the flow of X 4.

Problem 6.1(2) Using Frobenius’s theorem, it is evident as A is spanned by a single vector
field, and the bracket is antisymmetric.

Without Frobenius it is evident, as the submanifolds are the integral curves of the vector
field.

Problem 6.2(1) We need to show that
05 = dy’ — b (x,y)da’
are independent. A condition for this is that their wedge product is non-zero,
Ngllg =dy' A+ Ady" +...#0,

as all the terms left out contain some da’ and the dz‘s and dy’s are independent.

2 Geometry and topology

7 R3 and Minkowski space
Problem 7.1(1) The velocity vector is

d
- (—wsinwt,wcoswt, k)",

V—E—

and its absolute value is given by v? = w? + k?, therefore T = v/v/w? + k2, the acceleration is

=5
and this is to be split as a = (dv/dt)T + kvn, so kv’n = a — (aT)T, but a- T = 0, as
the magnitude of the velocity is constant, so the acceleration only has the xv?n term, yielding
kv? = w?, the curvature is thus

a (—w? coswt, —w? sinwt, 0)

w?
K= —.
w? + k2
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Problem 7.1(2) Using primes for arc-length derivatives, x’ = T, T = kn and B = T X n,
so B =rknxn+Txn' =T xn'. As B is a unit vector, its derivative is orthogonal to itself.
So is n, therefore, n’ is in the plane spanned by T and B. Consequently, T x n’ is parallel to
T xB =T X (T x n) = —n. This justifies the definition of the torsion.

Let us now expressn asn = B x T, so

d
d—n:B’><T+B><T’:7'n><T+B></fn:—/<T—7'B.
S

Problem 7.1(3) Let us consider a curve z(t). Now
dz® m
oAz — mcPdt :/ [ a——mcz} dt:/ mv? — mc? dt:/—ovz—CQ
/(p ) p dt [ ] \/TQ/CQ[ }
— —mocz/\/l —v?/c2dt = —mOCQ/dT.

The —Vdt term is simply kept as it is.

Problem 7.2(1) We have f = —vq(i,€)dt + v¢(E — iv/B), and u = (y,yv) = v0/0t + v,
so introducind & A dt, i, (E A dt) = —viy&dt + 78, and what remains in f is thus ¢ times this,
and the terms containing @B, the coefficients can be identified, yielding

1
f = —qi,F, F=8Ndt+ -B.
c

Problem 7.2(2) The transformation is such that dt¢ is replaced by dt = d(yt' + va') =
vdt' + yodz” and dz = d(ya' + vt') = yda’ + yvdt’. In F = F,.;da’ A dz? this influences the
components as follows: for Fy; = —FE,

—Eydt Adw = —Ey (ydt' + yvda’) A (yda’ + yodt') = —E17* (1 — v?)dt Ada’ = —Ejdt’ Ada’

yielding F| = E;. For Ey, dt’ A dy terms come from dt A dy and dz Ady, dt Ady = vdt' Ady +
~vyudzr' Ady and dz A dy = ydz' A dy + yodt’ A dy, so

Ey =vE; —yvBs,
and dz’ A dy also comes from these two,

By = —yvEy + B3
and similarly for dz A dz and dt A dz.

Problem 7.2(3) F =8 Adt+ B/c, so
FAF=—2dt ANEAB/c

and as § A B = E - Bvol®, dt A vol? = vol* we obtain the desired results (returning to units
c=1),
FAF=-2E-Bvol'.

Similarly, *F? = — % B A dt + %8, so
FAxF=—-dtNEA%E+dENB N B,

and again using the formulae in sec. 2.10, we obtain the relation to be proven.
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Problem 7.2(4) Eq. (3.32) reads

3

do
—+dj=0
ot / ’

and the charge-current form & is defined as
S=0"—j2ndt,
where 03 = pvol®, so do® = 9p/0tdt A vol® = dt A do/Ot, and dj A dt = (dj) A dt = (dj) A dt,

as the time derivative part of d contains a dt, and dt A dt = 0, so

o3 , do .
dS_thE—(d])/\dt_—(Eer]) Adt.

Problem 7.2(5) As the function H is invariant, and so is the four dimensional volume form
vol* = dt A dz A dy A dz, we may try to split the volume form as in classical mechanics. As H
is an invariant function, so is dH and invariant form.

dH = 2tdt — 2xdr — 2ydy — 2zdz,
so, on the upper hyperboloid

dx ANdy Adz
t

= 2vol* .

dH A

Evaluating this on vectors such that IN is normal, T;, i = 1,2, 3 are tangent to the hyperboloid,

and they are invariant, to see that the second value of the form is indeed constant. As that of

the 4-volume form and of dH both are, so must that of the volume form on the hyperboloid.
It is possible to proceed with the same steps on the lower component of the hyperboloid.

8 The geometry of surfaces in R3

Problem 8.1(1) z = asindcosp, y = asindsin g, and z = acos ¥, where 9 and ¢ play the
role of the coordinates u. Now

ox

=35 = (acos cos p, acosVsin p, —asin )’

Xy

and
_x
(2 8g0

yielding the metric components

X = (—asinsin ¢, asin v cos ¢, 0)"
o _ 2 _ 2 219 _ =0
919719—1179'1119—(1, gwp—u(p-u(p—a Sin ,gﬁ#p—uﬁ-uw— .

Equivalently, the metric is
g = ds* = a*(d¥* + sin? ¥dy?),

where d? = d¥ ® dvJ, and dp? = dp @ de.
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Problem 8.1(2) The angle between the tangent vector and the meridian is given

cosa = (T, x9)
T[]l
where T = (1,dp/d?) and the tangent vector of the meridian has components (1,0), so
1 1
cos o = 1 +sin?d(¢')? =
\/1 2ginZy Cos «

The arc length is thus

s = / \/1+ (¢)2sin? ¥dv) = T4
cosa

We have assumed that cosa > 0, i.e., the curve goes down. In the other case, reverse the
parametrisation, obtain ma/| cos a|.

Problem 8.1(3) The surface element is \/gdddy = R?sinddd A dy, so the integral to be
computed is

A= RZ/ﬂ/Qsmﬁdﬁ/ de = R* [~ Cosﬁr/i[ ]”4 = W—RQ
/4 "/ 42

Problem 8.1(4) The vector fields tangent to coordinate lines on the surface area

ox 1 ox 0
x;=—=| 0], and x4 =—-—= = 1
oul 9 ou? _dy

Using these, the metric components area
g1 =ug -y =1+4a”,
g2 =z - uy =1+ 16y°,
g2 =up -up = —8xy.
The matrix of the second fundamental form is computed using the normal vector

N = XXX (—2z,4y,1)T 1 _42$
— = — y
|x1 X xo|  [(—2x,4y,1)| V1 + 422 + 16y2 1

The matrix b3 is that of the second fundamental form, mapping a vector X to the derivative
of the normal vector in that direction,
ON®

by =—
A 8u5

which requires derivatives of the normal vector, a bit complicated. In stead, we follow the path
outlined in the book, using the second derivatives of the coordinatiosation,

0*x
X11 = a_u% = (07 072)T
0*x
x = (0,0,—4)7,
22 — 8 %
0%*x
*12 = (9u18u2 =0
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This is used to compute the lower-index version, the matrix of the second fundamental form,
ba,@ = Xaﬁ . N s

yielding

1 2 0
(baﬁ) = (0 _4) :
V14 422 + 16y2
To raise the index «, the inverse metric is needed,

e 1 1416y Say
T T T 1162\ 8wy 14422)°
SO 1 9
@ 1 .| . 2 + 32y —321'y
(b B) =g (baﬁ) =g (baﬁ> - (1 1+ 472+ 16y2)3/2 ( —32my —4 — 16:(}2 )

which yields

N 2
(6*5)] 00y = ( —4) '
2 2

Problem 8.1(5) Using the notation z = z' = u!, y = 2% = «?, in the new coordinates
the surface is such that x = (x,y, z(z,y)). The coordinate vector fields are x; = (1,0, z,),
x2 = (0,1,2,) and so x31 = (0,0, 245), X12 = x21 = (0,1, 2,,) and x92 = (0,0, 2,,), where
coordinates in the index denote derivatives w.r.t. that coordinate.

The normal vector is N = (—z,,—z,,1)/4/1+ 22 + zZ, and so the matrix of the second
fundamental form is

bas = 1 (zm mxy) .
1+ 22+ ZZ Zey  Ryy
In the new coordinate system, it has also been assumed that at 0, the x,y plane is tangent to
the surface, which, looking at the vectors x, spanning it, is equivalent to z,(0) = 2,(0) = 0 in
addition to 2(0,0) = 0. This substituted into b,s(0) simply shows that b,s(0) = 9%2/0x*0x",
and so the formula to be proven is just the leading term of the Taylor series of z(z!, z?).

Problem 8.2(1) (i) let us consider f(t) = f(x(t)). Its derivative is f(¢) = d/dt(x(t), bx(t)) =
(&(t),bx(t)) + (x(t),ba(t)) = 2(@(t),bx(t)). As e; is a maximum location, ¢ = 0 is one too for
the one-parameter function, therefore 0 = f(0) = (i, be; ).

(ii) Any vector orthogonal to e; can be considered as the tangent of a curve at e; on S"! as
T, S" ! = E{. Therefore (i) showed that b restricted to Ei- maps into E;i-. The mapping b is
self-adjoint, a for any vectors vy o € Ef, (v1,bva) = B(vy,v2) = B(va,v1) = (vg,bv1) = (bvy, v2).

Having shown that b : B — Ei- is self adjoint, the induction step can be performed, and
is evident.

Problem 8.2(2) The Gauss curvature K is the determinant of b [more precisely, (b%3)],
8

') = g K00 =8,
and the mean curvature is Trb [=Tr(b%3) = b%,],
1 2 1 2
H=Trp— o150 = 10y H(0,0) = 2.

(1+ 4224 16y2)3/2”
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Problem 8.2(3) The unit normal of the curve is calculated as

1L, H)7T .17 11
T — ( Y ) — ( ) ) , T(O) — ( ) ) ,
[(LDF 201+ 227 — 8y + 8y?) V2
and using this, the curvature is
1
r=-B(T,T)= k(0) =1.

(1 +222)v/1+ 2022

The sign has been chosen as — because the curve is downwards curved (the coefficient of y is
larger in z), and the normal chosen points up.

Problem 8.2(4) Let T, 5 be the unit eigenvectors corresponding to the principal curvatures.
The unit tangent vector of a curve that makes an angle ¢ with T; is T = cos0T; + sinfTs,
and the curvature is computed as

k= (T,b(T)) = Ky cos> O + kysin® 0,

using b(T;) = ;T; and that for a self-adjoint mapping, the eigenvectors are orthogonal to each
other.

Problem 8.2(5) Simple calculation, coordinate vectors are x; = (1,0, f,)*, x2 = (0,1, f,)7,
the normal is

(_fxa _f ) 1>T
N= Wl/g ’
and the metric
_ (1 + 17 fafy )
fofy 1+12)7

and the inverse is

2 _ Y
oo (U )

the directional derivatives of the normal in these directions is

— —-1/2 .f:cac fxy)
o) = (2 ).
and so

« | — —3/2 fwx(1+f2)_f:vyfacfy fzy(1+f2)_fa:fyfyy>
v =) =W (E LT TR IR

Using these,

g2
K = det(b*s) = % :
and Fos(L+ 12) = 2fofyfoy + o1+ £2)
H = Tr(bo‘ﬁ) — T Y I;/;J/;Ey vy T .
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Problem 8.3(1) The antipodal map is a : ' — —x?, so
Al = G Z(—l)i_lxidxl A...dzi-o Adat!
=> (1) (=a)d(—z") AL d(=a)t - Ad(=2"T) = (1) w,

and the integral of w is one. (One could start with the w = i, dz! A -+ A dz™™ form, and note
that the vector field r is invariant to the antipodal map.)

Problem 8.3(2) The Jacobian maps the differential form dz A dy = (—i/2)dz A dZ into
fedx Ady = O(u,v)/0(x,y)dx A dy. To calculate the Jacobian we need

Af(z) AAF(Z) = f(2)dz A F2)dZ = |£(2)Pdz A dz,

proving the desired result.

Problem 8.3(3) The derivative there is

n—1 n . . 1) — w™ n—1 Oy
W (w) = nw" ! apw™ + —l—z w+1) —w (na02w + . Gp-1) 50, (w—0),
(@pw™ + + -+ + ap_jw + 1)

which is not onto, therefore oo is not a regular point. As the pre-image of oo for the polynomial
is p~!(c0) = {00}, oo is not a regular value either.

Problem 8.3(4) The Brouwer degree is defined as an integral, so it is a continuous function
of ¢ for the deformed polynomial z — z"¢(a, 12" + -+ + a1z + ag). This degree takes the
value of degf at e = 1, and degz™ at e = 0. The degree is also an integer, which can only be a
continuous function of € € [0,1] is it is constant. The degree counts how many times a given
value is assumed, which for the case of 1 is the number of complex solutions of z” = 1, namely
z=e2/n | =0,1,...,n—1,ie., n.

Problem 8.3(5) Suppose there was y € V, such that #z € M : F(z) = y. Due to the
continuity of F', there is also a neighbourhood of y which has no pre-image, so there are
also normalised volume forms on V' that have a support in this neighbourhood. Calculating
the Brouwer degree of F' with such a volume form would then yield 0, in contradiction with
deg F' # 0.

Applying the result to a polynomial, it must be onto the Riemann sphere. This includes
that it also assumes the value 0.

~

(z—2zp), 80 Plz;)) =21+ Zj -z I 2

Problem 8.3(6) P'/(z) = S,(z — 21)...(z — 2) ...
is a multiple root, i.e., 3j, z; = z;, then P'(2;) = 0.

Problem 8.3(7) According to formula (8.20), the integral of the Gauss curvature, K, is the
degree of the normal vector field, as a map from the manifold to the 2-sphere. The degree is
als the number of pre-images of a given value, with sign according to orientation, as shown in
Theorem (8.17). Let us consider the normal at the “left” of figure 8.7. That is assumed in each
hole, with a negative sign, and once on the left of the figure, so the degree of the map is 1 — g.
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Problem 8.3(8) The index is defined as the integral of the pull-back of the volume form,
indexv = V_l/ v*ipvol™ T,

In the case of v(x) = x, the derivative is the identity, and the integral is just V', so ind v = 1.
For the case of v(x) = —x, is the antipodal map, whose degree is (—1)""!, as shown in the
solution of Problem 8.3(1).

Problem 8.3(9) Let the vector field v = v/|v|, and using M = 0U and Gauss’ theorem,

indexv = V‘l/ v*vol = V‘l/ do*vol = V‘l/ v dvol = 0.
M U U

Problem 8.3(10) The index, with normal pointing inward on the 0B,’s would be the nega-
tive of that with the normal pointing out. The index on the surface consisting of M = 90U and
the 0B, ’s with the normal pointing in is 0, as this surface is the boundary of U — U, B,.

Problem 8.3(11) Let v be such a vector field. If it never points to the center, then (1 —
€)v+ €N is a non-vanishing vector field, and so it has the same index for all e. We may evaluate
it at e = 0 getting the index of v, and at ¢ = 1, getting 1.

Problem 8.3(12) Let us consider the vector field v(x) = ¢(x) —v, and assume that ¢(x) # z
for all x € B"*!. This is a vector field everywhere non-zero, so its index is 0 [it is also defined
on the interior, Problem 8.3(9)]. On the other hand, it also nowher points in the direction of
the outer normal, so —v never points to the center, so the index of —v is 1, the index of v is
thus (—1)", which is a contradiction. Our assumption must be false, somewhere ¢(z) = x, the
mapping has a fixed point.

Problem 8.3(13) The index of a unit vector field is computed as the pull-back of a normalised
volume form « on S, e.g., a = (A,) tiyvol™™!

indexv = / v = (An)l/ v*ipvol™ Tt = / vol"™ (v, 8—V, e v dul .. du™,
M M M dul our

which is what we intended to proove. We have used that we need to evaluate i,vol at r = v in

S", and v*(9/0u’) = Ov/du'.

Problem 8.3(14) Replace in the result of 8.3(13) v with v/||v(u)||. The derivatives become
ov/ou [||v(u)||—va|v(uw)]|/Ou'/||v(u)||?, and the second term is proportional to v, so it drops
out due to the anti-symmetry of vol”.

Problem 8.3(15) Let the unit vector field be

o
L= "%

B |r19]

All that is needed is to see that vol(ris, dr12/00, Ori5/0¢) = —ris X dry/df - dry/d¢, and the
sign is absorbed into exchanging the second and the third vectors in the triple product.
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Problem 8.3(17) The interesecion number W2 o Cy is defined as the signed number of
intersections of a surface W2 spanned by C; (i.e., OW = C}) and Cs.

Using the formula for the magnetic field of the current flowing around the curve C5, and
the result of Problem 8.3.(15), we see that the linking number is

Lk(Cy,Cy) = (4m)! j[Bdrl.

According to the Ampére-Maxwell law, the integral of the magnetic field around C} is 47 times
the current flowing through the surface W, which is

/ j:W0027
w

as the current is 1 in the curve, and it flows through at each intersection.
Problem 8.4(1) (i) is simply using the linearity of an integral,
At) = / || xu (u, v; 1) X x,(u, v, t)||dudv = / II(1 4 t)xy(u, v) x (1 4 t)x,(u,v)dudv
e —i—t)z/HXu(u,v) % %, (u, ) [dudo = (1 + £)2A(0).

(ii) Use the derivative of the previous one, dA(t)/dt = 2(1 + t)A(0), on the other hand,
in formula (8.23), the surface integral term vanishes (as the surface is a minimal surface), and
thus

A(t) = 7{0@) (ax(s’t) X N) x(s,t) = (1+1) fc(N X X) j—l‘ds - jq{deuN,x, dx) .

0s .
Equating A’(t) = 2(1 + ¢)A(0) and this expression yields what was to be proven.

Problem 8.5(1) Let us consider the derivative of the surface equation (8.30) w.r.t. u?, yield-
ing
XaBy = Xmul_wga + XTE%FTBQ + E)WbaﬁN + ba587N7
and use the surface egs. (8.30) in the first and the Weingarten egs. (8.5) in the last term,
resulting in
Xapy = XTFT,WIW[;Q -+ F“gab‘wyN + XTayFTﬁa + 8,YbagN - Xq—baﬁbT'y .

Collecting the terms in Xog, — Xayp yields the definitions of Rj 5., Uy and Vg,

According to Young’s theorem, partial derivatives are symmetric in their indices, therefore,
R =U and V = 0 yielding the upper and the lower line of Eqgs. (8.34), respectively.

Problem 8.5(2) The metric is, according to eq. (8.33), g1 = a2, gop = a*sin®¥ and g1 =
go1 = 0. This lets us compute the Christoffel symbols, of which the non-zero ones area
Iy = —sindcos?, and T2, =T% =cot?.
The desired component of the Riemann curvature tensor is R'?13 = ———=R'515 with
R'o1o = 09T 00 — 0,0 10 + THal ag 4+ Tl 00 — T g — Topl s,
and substitution yields (from the first derivative and the last quadratic terms)

1 2 12 2
Ry, =sin“vY, so R™“ 5y =1/a".
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Problem 8.7(1) The initial vector is X!(0) = 0, X?(0) = 1, and the tangent vector of the
curve is u'(t) = 1, u?(t) = 0. We need to compute the Christoffel symbols I'(5, the nonzero
ones are

e =—1/y, Tu=1/(2y), T3=-1/y,

so, the differential equations to solve are

dxt
dt — —F111X2—F112X2:X2/y:X2,
dXx?
TR T2 X -T2 X2 = - X1/ (2y) = —X1)/2.

or, re-written as a second order differential equation,
d? X! Xt
T

which is the harmonic oscillator equation, using the initial conditions, we get

vl wge(l)

Problem 8.7(2) (i) As w is a unit vector, dw/ds is orthogonal to w. Now the covariant
derivative is the part of the derivative in the tangent plane,

Vw dw dw
—— - _N(N.-—2),
dt dt dt
and, as w is a vector tangent to the surface, it is also orthogonal to the normal vector N.
(i) For simplicity sake, let us consider v a unit vector. As the

o d T — 1 Vv T) 4+ VT B 1 B
ds ds arceosy n :Fsine ds M ds n :Fsinﬁv g = Thy-

where we have used Eq. (8.44) and that v is parallel transported, so Vv/ds = 0, and that &,
is orthogonal to T, as it only differs from xn by a term proportional to N, and it is in the
tangent plane, therefore if v - T = cos @, then v - kK, = £k,5in 6.

9 Covariant differentiation and curvature

Problem 9.1(1) In a coordinate frame,
(Vyv) =Y 0" + wiyv’),
therefore
(VxVyv)' = XY (0p000" + 0w’y v7 +w'y 007 +w' ;0007 4w wiio? ) +(XF0,Y ™) (O v+, 07
and similarly, exchanging the roles of X and Y,
(VyVxv)' = XY (0,050"+0pw' ;07 +w' ;000 +wiy; 00! 4wy, wlo? ) + (Y0, X ™) (O v’ 4w, 0°) -
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The difference of the above two yields
VxVyv —VyVxv = V[X’Y]V + R(X, Y)V,

where the second derivatives drop out due to Young’s theorem on the symmetry of partial
derivatives, the last terms yield the covariant derivative in the direction of the bracket of the
two vectors, as [X,Y]" = X79,Y* — Y79, X", and the rest yields the curvature term with

R ke = ak:wej - aewkj T WemWej — WenWh -

Problem 9.1(2) The components of the vectors transform as, e.g., X" = J; X7 where
J = 02" /0x7. A mixed tensor transforms as B''; = J, B*,(J1)¢,;. Now
A/;"kZX/ky/é — Jim<J71>njAmnkéXkYZ
_ A/;mnjkakJneyf’
which holds for any X and Y, so
Jim<J71>nkAmnk€ = A/ijnt]mkj? ’

or, equivalently,
Tk = (T (T (TP A

which is the transformation rule of a rank 1-3 mixed tensor.

Problem 9.3(1) Ve = e®uw (“matrix-tensor” product, e is a row vector of vector fields, and
w is a matrix of one-forms, the result is a row vector of vector valued one-forms). The second
exterior covariant derivative is now applied to this, using eq. (9.31),

VVe=V(e®w)=(Ve)dw+edv=(eQuw) @, wt+eRdv=e® (WAw+dw) =e®§0.

We conclude that
0=dw+wAw,

which is still a matrix-wedge product, written out as
Gij = dwij + wik A\ wkj .
Furthermore, Wl = cgirja”, so dw’, = swim-as Ao = (1/2)(0,w's; — Osw'yj)o* A 0" and
similarly w', Aw"; = Wi pwhy0" Aot = (1/2)(wipwts; — wigwh,;)o" Ao?, yielding dw +w Aw =
(1/2)R'j,s0" A o with
Rijkl = 6kwigj — 8gwikj + wikswjj — wigswskj .
Problem 9.3(2)

Viero)=(Ve)Ro+e®Rdo=(eQuw)Rc+eR@(—wAo+T)=eRT.
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Problem 9.4(1) The connection form w is defined as Ve = ew, we have, from €' = eP, that
Ve =V(eP) = VeP +edP = ewP + edP = &P 'wP + P 'dP = €W yielding

W' =P lwP+ PldP,
which is Eq. (9.41). Using the definition of the curvature, § = dw +w A w,
dw' =dP ' AwP + P7'dwP — P7'w AdP +dP~ P AdP,
and
W AW =P 'WPAP P+ P 'YdPAP'wP+P 'wPAPdP+ P 'dP AP 'dP.
Let us now collect the terms,
P 'dwP + P'wP AP 'wP =P ' (dw+wAw)P =P P

and the remaining terms we use the fact that P~'P = I, therefore dP~'P + P~'dP = dI = 0,
so dP7'wP = P7'dPwP, therefore AP~ AwP = —P~'dPP~! AwP cancelling the second term
from w’ A w. The third term in dw’ ancels the third term in w’ A w. Similarly, in the last term
of W' Aw' we may replace P~'dP = —dP~'P yielding P"*dP A P7'dP = —dP'PA P~ 'dP =
—dP~!' A dP, which is cancelled by the last term of dw’. What remains is the terms we have
collected above,

¢ =P opP,

which is eq. (9.43) that was to be proven.

Problem 9.4(2) The transition matrix P is obtained as
j % g—j; _ [cos? —rsind)  (cosd¥ —sin? 1
- b ~ \sin? rcos?¥ /) \sin? cosd r) -

or
cos? sind\  (cos? sind
—sind cos?® ) |\ —sind cosd |-

pre

-~ sin¥dy —drsind — r cosvdv
~ \ cost¥dy  drcos?d —rsinvdyd |’

<=

The inverse is

3 =

Derivation yields

and so
W' =P 'dP = (i _Z_,fw> .

T T
The curvature form is obtained as
0 =du +w A

is obtained from the terms
and

yielding 6" = 0.



Problem 9.4(3) Let us calculate Vyay = day + wy A ay = cypday + deyy A ap +
(CVUCL)UCUV + CVUdCUV> A\ CyuQy, and using CvuCuyy = idUﬂV7 dCVUCUV + CVUdCUV = 0, y161d111g
cyydeyy = —deyyepy, or, cypdeyyeyy = —deyy

V\/OZV = CVU(dOZU+wU/\OzU)+dCVU/\OéU+CVUdCUv/\CVUO./U = cVU(dozU+wU/\ozU) = CVUVUOzU.

Problem 9.5(1) Let us proceed analogously to the calculation in the text, i.e., let

1 d d
ds? = = (da® 4+ dy®) = (o) + (07)?, ot = e Y.
Yy Yy Yy
Again, wyy = act + bo?, and
do! = —wis Ao? = —act A o? ,
de AN d
— d(de/y) = ==Y =51 A o2,
Y
yielding a = —1, and, using wy; = —w12
do? = wis Aot = —bo! A o2,
= d(dy/y) =0,

vielding b = 0, s0 wys = —o! = —dx/y. The curvature is obtained as 015 = dw;, = d(—dz/y) =

—dz Ady/y* = —o!' A o?. The Gauss-curvature is —1.

To use the formula, one must exchange 1 <+ 2 in the text, and use v = y/x and v = logy
to get to a form ds? = e"**du? + dv? = G%du? + dv?. Using the formulae yields (change of
sign due to exchange of roles of u and v) wis = (G,/G)o! = —0' = —G,du = —dz/y and
010 = Gpdu Adv = G, /Got No? = —du Adv and K = -G, /G = —1.

Problem 9.5(2) The position vector parameterised with x and @ is (x, f(x) cos ¢, f(z) sin )7,
a small change in z produces a displacement (dz, f'(x) cos pdx, f'(x) sin pdy) and one in ¢,
(0, — f(x) sin pdy, f(x)cos pdyp. The two are orthogonal, so Pythagoras’ theorem yield

ds® = (14 f'(x)*)dz® + f(2)*de® = (0')* + (07)?,
where 0! = /1 + (f")2dz and 0® = fdy. Again, writing the connection form as wyy = ac'+bo?,

on one hand,
do! = —wia Ao? = act Ao?,

— d(\/T+ (fPda) =0,
yielding a = 0, and

do? = —wis Aol =wpp Aot = —bat A o2,

= d(fdp) = f/(@)de Adp = —F—o" no?

——0 A0o°,
e
on the other, yielding b = — f'/(f\/1+ f?), and wiz = f'/f//1+ [20% = —=(f'/+/1+ f?)de.

The curvature form is computed as

f/ f// f// 1 5
Op=dwp=d| ——Lt—dp | =——LdzAdp=———"—
v ( Vi) T T N T T
yielding
R A
fL+ )2
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Problem 95(3) aijk = aikj = —akij = —akji = CLj]m; = ajik = —al-jk.

Problem 9.6(1) The vector was only parallel displaced along the curve, and does not neces-
sarily exist on the interior U. Even if it is extended into a vector field somehow, dv? + w’;, = 0
on C only means that this form evaluated on the tangent vector of C' vanishes. The form itself
is not zero in the interior, and that was used when going from the third line to the fourth,
replacing dv? by —w’ k.

10 Geodesics
Problem 10.1(1) The length of the curve is L(a) = fOL (0x/0s,0x/0s)'/2. The derivative is

thus .
ox V [(0x
! - 12072 Y (22
L'(a) /0 (0x/0s,0x/0s) <8s’ %G (3s)> :

Now we use Theorem (10.1) to exchange derivations by s and «, yielding

L'(a) = /0L<8X/8s,0x/85)_1/2 <%, % (g—z>> .

O [ox ox\ [V Ox Ox\  [Ox VOx
ds \0s’ da/  \0s s’ da 0s’ 0s0a [’
we may express the RHS of L'(«) with the derivative of the scalar product, and the remaining

term from the RHS of the last equation. In the case of a = 0, the vector T = 9x/0s is a unit
tangent vector, so introducing the notation J = 0x/0a, we get

L’(O):/OL {%(T,J>—<J,%>} ds:<T,J>Q—(T,J>p—/OL <J,%>ds.

Problem 10.1(2) In Problem 9.5(1) we have calculated the connection and the curvature
forms, wis = —dz/y and 05 = dw;s = d(—dz/y) = —dz A dy/y?. The Gauss curvature is
K=-1.

A vertical geodesic has unit tangent vector T = e; = y0d/0y, so using the connection form
from Problem 9.5(1) we get

Ve J ‘ 2
d_32 = Vrey = Ve, = ejw's(ey) = Yor <_§> (ya—y) -

Using

proving that the vertical lines are geodesics. To verify that the vector J is a Jacobi vector, let
us write it as J = (1/y)ey, i.e., its z coodinate is J' = 1/y and its y coordinate is J? = 0. In 2d,
the Riemann tensor is characterised by a single entry, so the components of the Jacobi vector
must satisfy Eq. (10.7), and that the parallel component satisfied d?>J'/ds* = 0. The other
component satisfies, on one hand, d?J!/ds?* = yd/dy(yd/dy(1/y)) = yd/dy(—1/y) = —1/y and
on the other hand KJ! = —J! = —1/y. Jacobi’s equation holds.
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Problem 10.1(3) We have actually done this in the previous solution. The differential
equation is derived as follows:

b= () ()= ().

as T is the tangent of a geodesic. The second derivative is therefore, similarly,
d? \Vas |
—J,T)=(—,T)=—(RJ, T)(T), T)=0
0 = (3T) = ~(RE.TT).T) 0.

as the covariant Riemann tensor is skew symmetric in its first two indices, see Eq. (9.54).

Problem 10.3(1) The circle at polar agle ¥ is a circle in R? of radius r = asin, therefore
L = 2masind. Its geodesic radius is the length of the circle section from polar angle 0 to ¥,
r = af, therefore

3 3 1
K = 11n1_r>r(1) m(2ﬂ'7‘ — 2masiny) = 1191£>n0 m(%rm? — 2masiny) = ol

where we have used the Taylor expansion sind =9 —93/6 + .. ..

11 Relativity, tensors, and curvature

Problem 11.1(1) The covariant derivative is
v _ar

dt  dt
and the vector T" has components approximately (1,0, 0,0), and J* is orthogonal to T", therefore

JO ~ 0. What remains is VJ*/dt = dJ*/dt + I'{ Jﬁ The relevant Christoffel symbols are,
using g*% = 0 [see eq. (11.1)],

9970 | 990 990s
re 7 T _ —0.
05 ™ 29 ((%5 * 0z ol

+I%,17J%,

Problem 11.1(2) The equation we need to verify is

0 oUu
2 - = 7 aff 7~
VU \/_0 (\/ﬁg 83:5) ,

where the determinant of the spatial metric is h = det(gas) = (1 — 2m/r) trtsin® .
Of the gradient components, the derivative w.r.t. r is non-vanishing,

oU m

ar r2\/1—2m/r’

yielding the only non-vanishing upper index component

20U m 2m N ou

— = —34/1 - — — =msind
or  r? r’ ’

2 _Lg rraU _
VU—\/_a Vhg o) =0

therefore
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Problem 11.2(1) The derivative is, of course, zero, so

m

= 07Tl — 04Ty = Ty — Ty = 0.
Problem 11.2(2)
Gij/k = Okgij — 9miLli — GimUy = Okgis — Uik — Uing = 0595 — Uji — Uije

where we have used (9.17) to exchange indices on the Christoffel symbols, and according to eq.
(8.32),

1
Lij = 5 (Okgij + 059k — 0igjk)

so exchanging indices ¢, j only exchanges the second and the third terms, which, therefore,
cancel when adding the original and the index-exchanged versions,

Liji + Ujik = Okgij »
cancelling the derivative term.
Problem 11.2(3) The Codazzi equations (8.34) are
Oybops — T7, = Osbay — T 507y
and bag/y = Oybapg —T7 brg — I7 sbar, and bay /s = Opbary — T b7y — I} bar. Using the symmetry

of the Christoffel symbols, in both covariant derivatives the last term is the same, and the first
and second terms are the ones in the Codazzi equations.

Problem 11.2(4) In solution 11.2(1) we have shown that the identity tensor is covariant
constant. Using the Leibniz rule and commutation with contraction,

0="0s = (9"950) 0 = 97 1ot + 97 Girsr = 97 19
As gji, is invertible, ¢g" . = 0.

Problem 11.2(5) The mean curvature is defined as H = Trb, where b is considered mixed,
H = ¢°fb,s. The gradient vector is

(grad H)™ = g 950", = ¢°"g"by5y5 = g g"°by3/5 = b7 ) = (Div b)*

where in the equality marked with an * we have used the Codazzi equations [see solution
11.2(3)].

Problem 11.2(6) Eq. (11.21), the second Bianchi identity, is
Rijkr/s + Rijsk/r + Rijrs/k =0.
Contracting indices i, k yields
Rj.)s — Rjs/r + Rijrs/z' =0,
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where we have used the antisymmetry of the Riemann tensor in its first two indices in the
second term. Now raising index j and contracting with r yields

Ry— R+ R, =0,
In the third term, RYjs/i = —R7};;; = —R'y;, therefore
R,s = 2Ris/i7

which is what was to be proven.

Problem 11.2(7) Let us calculate the covariant divergence of the tensor T,
T ) = pju'e? + pu'jju! + pue? ; + p (g7 +u'n?) + pu 0l + put? ),
where we have taken into account that the metric is covariant constant. The field u is a 4-
velocity field, u* = w'u; = —1, therefore 0 = (u'w;); = 2u’/;u;. Using this, one contraction
is
0=u'TY); = —puw —puj —pu'j,
yielding the first equation, ' ‘
(pu’) )y = —pu 5,
or equivalently, what was to be proven, div(pu) = —pdivu. The component orthogonal to u’
is obtained by multiplying with the projection operator ¢=! + u ® u, yielding

pu' i’ + pu’ 0’ + p (g7 + u'e?)

which is equivalent to the second equation to be proven, (p + p)u’/;u/ = —p (9" + u'n?).

Problem 11.2(8) In coordinates, one merely needs to consider
Vjak = Qg j + F;’}cam s

and the term drops out from the exterior derivative formula due to the symmetry of the con-
nection coefficients in jk.

For the p-form, we refer to Sec. 4.2b: the value of a derivation or anti-derivation is de-
termined by its value on functions and one-forms, and on those, the formula with the covari-
ant derivative agrees with the original definition of the exterior derivative. All that needs
to be proven is that the expression here determines an antiderivation. That holds, because

if @ = B Ay then ax = 35, 0 brear, so dar = 373" S SEM (by, sear + brear;) =
35 53785

S 01 M (brgenr +brearg) = 3510 67 M brgear + (1P X 10 07 brea.
3= 3= 3=

Problem 11.3(1)

owuk  TFoul

is to be calculated. The equation is covariant to choosing the coordinates in the embedding R3,
therefore, we may choose them in such a way [see solution 8.1(5)], that x = v and y = v are the
direction of the principal curvatures, and z orthogonal to the surface, i.e., locally N = (0,0, 1)T.
Also, in this point, the metric is the unit matrix, as b = diag(by, b,), and the equation of the
surface is locally z = (b,u®+ b,v?)/2, and the Christoffel symbols therefore vanish. The second
derivatives of x,y vanish, those equations hold. For the z coordinate, V22 = b, + b, = H.
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Problem 11.3(2) According to the previous exercise, HN = V?x on the surface, thus, using

Gauss’ theorem
// HNdS:// V?xdS = VxdS =0,
M M oM

as for a closed surface OM = (.

Problem 11.3(3) 40\/—g = —(1/2)\/=ggix0g™, therefore dL,, = —1/(87)[F;;F,s69"¢’* +
FijFrsg0g” — (1/2)FsFgindg™*y /=g = —1/(8m)[Fy Iy + FuiF®y, — 1/2gis Frs F™°]\/=g0g™
yielding T}, as the coefficient of —/—gdg®*,

1 1
T = — irF'r__i'FrsFm .
T e
Problem 11.4(1) (i) just consider a neighbourhood where z',... 2" are coordinates, and

locally V' agrees with 2" = 0, and extend the vectort fields with the coordinates depending
only on z!,..., 2" !, and the nth one being zero. As M is a Riemannian manifold with its
Levi-Civita covariant derivative,

VxY - VyX = [X,Y].

On the other hand, V¥Y = VxY — (VxY,N)N, where N is the unit normal. All we need to
whow is that when replacing V with V" in the equation above expressing the torsionlessness
of V, the normal terms drop out,

which we can do in coordinates, N* = ¢, and X*/; = 0; X" 4 T}, X*, therefore
(VxY,N) =T X/v*

using X" = 0 which is a symmetrix expression in X and Y for the connection of a Riemannian
manifold M.

(ii) is even simpler, just replace VxY = V¥ Y +(VxY,N)N, and the same way for X ++ Y,
and note that (N,Y) = 0 = (N, X). As the definition of the Levi-Civita connection is that it
is the unique mtric compatible torsionless connection (i.e., the one for property (ii) holds), V"
is the Levi-Civita connection of V.

Problem 11.4(2) (i) The paper is flat, its Gauss curvature vanishes. Folding it means
changing its embedding into 3-space, but the Gauss curvature remains the same. At the crease,
one of the principal curvatures diverges, so the other must be zero.

The two principal curvatures are orthogonal. The zero curvature belongs to the direction
along the crease, i.e., that is a straight line.

(ii) If you consider folding the paper in a way that you hold the points along the crease fixed
and moving the two halves of the rest of the paper towards each other, then you see that the
crease is the fixed set of an isometry, i.e., it is totally geodesic. Geodesics on the plane (paper)
are straight lines.
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Problem 11.5(1) As hinted, 0,(E A %8) = 26 A0 % /0t = 28 A\ (d * B — 47j) using the
Ampére-Maxwell law, and similarly, 0t(B A *B) = 20B/0t A *B = (—d&) A *B, using the
Maxwell-Faraday equation, yielding

d 1 1 |
e U[(%’/\*8+QBA*@]_E/U[é’/\(d*@—élm)—(dg)/\@},
1
=— [ [~d(8 A*B) — 4TE A j]
47T U
__ @A*@—/g/\j.
AT Jou U

Problem 11.5(2) According to eq. (11.81), Ohap/0t = —2b,p¢. Furthermore, 0/det hog/0t =
1/2 x 1/y/det hoash®?Ohaz/0t and Tr hb = H, yielding the desired result.
As for the missing of the boundary term: when taking the derivative d/d¢ fv(t) dS™ 1, and

only considering the derivative of the measure (or integrand), the surface term should have
been included in addition. The assumption not to include it here is equivalent to assume that
either there is no boundary of it is fixed.

Problem 11.5(3) Let us write the cyclic Bianchi identities in the form
Rivik + Rijke + Rirej =0,

and add the three remaining cyclic permutations (i.e., Ryjpi +--- = 0, Rjgie +--- = 0, ...).
The result, using the antisymmetry in both pairs of indices, is

2Rijke +2Rp = 0,
or, equivalently, R;jie = Risij-
Problem 11.5(4) The Codazzi equations (11.61) read
(R(X,Y)Z,N) = (V¥B)(Y,Z) — (V¥ B)(X,Z).
Using (—goo)/>N = 9, and X = 9, Y = 9, and Z = 9, yields

(—900)"* Royap = bapy/y — by ja s

which is what was to be proven.
12 Curvature and topology: Synge’s theorem

Problem 12.1(1) (K, R(J, T)T) = K®RoupeqTJT? = JRogy TOKT® = Jo Ry TP K°T? by
relabeling indices, which is (J, R(K, T)T).
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Problem 12.2(1) Let M?"™! be a compact, odd-dimensional manifold with positive sectional
curvatures, and let us assume that M is not orientable. If it is not orientable, there must be a
closed curve C, transporting an orientation along which it is reversed. Consequently, there is a
geodesic Cy freely homotopic to C, and, as a sign can only depend continuously on a parameter
if it is constant, orientation is reversed when transporting along C,. Therefore, C, cannot
be contracted to a point, it must be of minimal length. A vector orthogonal to the tangent
vector of the curve can be parallel transported along the curve to yield an orthogonal variation
J. According to Corollary (12.6), for such a variation, L”(0) = —ng<R(J,T)T,J>ds <0, in
contradiction with its length being minimal.

13 Betti numbers and De Rham’s theorem

Problem 13.3(1) We use the notations of Fig. 13.20. As RP? is connected, Hy(RP3,Z) = Z.
The curve A is a 1-cycle, and the boundary of the 2-chain B is 2A, so

H(RP?,Z) = Z.A)(2Z.A) = Z,.
As 0B = 2A, B is not a 2-cycle, so
HyRP?,Z) = 0.

The boundary of the full space is 0, just as in the real case, as ORP?> = B — B =0, i.e., it
is orientable, so
H3(RP*,Z) =17..

Problem 13.3(2) As it is a connected surface,
Hy(M?*,R) =R, Hy(M?*Z)=17.

For any 1l-cycle, we may pull it out to the boundary, so 1-cycles are of the form oA + B +
~vC' 4+ dD. On the other hand, OM = A+ B—-A+B+C+ D —-C —D =2B, so

Hi(M,R) = (RA+RB +RC +RD)/(2RB) = R?,

and
H\(M,Z) = (ZA+7ZB + ZC + Z.D)/(2ZB) = 7 x Z, .

As the boundary of M is non-zero, it does not define a cycle,
Hy(M,R) =0, Hy(M,R)=0,
and so it is non-orientable. The Betti numbers are defined as b, = dim H, (M, R), yielding
bp=1, by=3, by=0.

Note: the surface M can be constructed as follows. If we consider the right half of the
octagon, that is a square with one of its corners “cut off”, and it has AB(—A)B on its edges,
just as the Klein bottle. The left half has CD(—C)(—D), which is a torus. Gluing them
together yield a torus glued to a Klein bottle, which is non-orientable.
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Problem 13.4(1) (i) Let us consider the pull-back of the closed form dd A d¢ with the
mapping F. Locally that is

F*(ddANdp)=d(W@oF)Ad(po F),

which is again a closed form. On the sphere, as its 1st Betti number vanishes, every closed
1-form is exact, i.e., there are functions ¥’ and ¢’ such that d(vo F) = dv’ and d(po F) = d¢'.
Consequently, the form F*(dd A dy) is exact, e.g., it is = d(9¥'dy’). Consequently,

Jo2 FX(dO Ady)

deg F =
o Jra U A dg

(ii) Using the results from above, a condition on M would be that its first Betti number
shall vanish, b, (M) = 0.

14 Harmonic forms

Problem 14.1(1) We wish to prove

(—1)PPq if M is Riemannian,
*(xal) =

— (=1)*™ P if M is pseudo-Riemannian .

The proof is as follows: according to eq. (14.3),

¥y = |g|OzK€;_<>i>7

SO
_ J _ K J o KJ
(x(xa)), = VIgl(xa)'e, = lgla™eg=es = lglaxes=ey 1,

where indices have been pulled up with the metric (and only using the definition of the lower
index € from sec. 2.5b). Now we take into account the definition of e,

1,2,...,n
6[ — 5[ 9

which we can use to rewrite the sums, so

B9 — gt L gFvtnp gittapit . ginbn 512

_ -1
1yl —pln_pt1..bn — |g |61_<>L7>7

and

_ ¢2,..ncl2,.n (n—p) §1,2,....n ¢1,2,...n
€K JE =90 ) = (—1)" 0 0
Ko €q1 =0k 0 = (SO SO

as to restore the original order of indices, all elements of K have to be exchanged with all
elements of J, and in the last term, the both ¢’s can be +1 only if K = L, therefore

*(xa) = |gllg~H(~1)" P,

and |g|lg7!| = [];sign A;(g), the product of the signs of the eigenvalues of the metric, giving 1
in the Riemannian, and -1 in the pseudo-Riemannian case.
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Problem 14.1(2)
Py = O 4+ T8 4 Tyttt gy Thp gtk

and as the Levi-Civita connection I'%; of a Riemannian manifold is symmetric in the lower
indices (it is torsionless), all terms vanish except the first two,

Bl = 0,8 + 19,8

As this is the same formula as for the divergence of a vector, we may use eq. (11.27) to complete
the proof.

Problem 14.1(3) Let us consider

oM

where in the first equality we have used the definition of d*, eq. (14.11), and in the second one,
eq. (14.14). Writing out (g, V2f) in the same way, and taking the difference yields the result
to be proven.

Problem 14.1(4) Eq. (14.17) says

/5320,
z

where & = 03 — j2 A dt. As the integral of & vanishes over any 3-cycle Z, it also vanishes on
the boundary of the cylinder Z = 9{V? x [0,T]} mentioned in the text. This integral is

0= / S — / ds .
a(V3x[0,T)) V3x[0,T]

and d§ =d(oc — j Adt) =do —dj Adt. Now d =d + dt A 9/0t, yielding

0:/ da+dt/\a—a—dj/\dt:/ dt/\(a—Uerj),
V3x[0,7] ot V3x[0,7) ot

as the first term vanishes when inserting 9;. The last integral must vanish when integrated over
any cylindrical domanin, therefore, it must vanish. In the brackets, we have the expression of
charge conservation already known, eq. (3.32).

Problem 14.2(1) (1) d*f° = xd * f°, and *f° = f°vol is a maximal form, so d x f* = 0.

(2) d*a! = —xd * , and xa = iavol, so d x a = (div A)vol, so da = —((div A)) * vol, and
vol = 1, s0 *vol = * x 1 = 1, yielding d*a! = —div A. [Or see Theorem (14.15).]

(3) d*% = d*igvol = *d * igvol = *d * 3! = *dB! = *i pvol.

(4) d*v® = —xd*73. Any 3-form +® can be written as v = g%vol® = x¢°, s0 %73 = xx¢° = ¢°,
s0 d*y? = — % dg” = —igpaq govol®.

(5) Af0 = (dd* + d*d) f°, and d*f° = *d x f° = 0 [see (1)], so Af° = d*df. The vector
corresponding to df is grad f, so Af = d*df = —divgrad f = —V2f.
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(6) Aa! = (dd* + d*d)a, and da = dcmavol, d*da = d*icuavol = *icuieuavol, and
d*a = —div A [see (2)], so dd*a = —ddiv A is the 1-form corresponding to — graddiv A,
yielding AA = curl curl A — grad div A.

(7) AB? = (dd* + d*d)B?, and d*B? = *icumpvol, the 1-form version of the curl, and
so dd*8 = demleansvol, and df? = x(divB), and so d*df = —igaqaivBVvol, again yielding
AB = curl curl B — grad div B.

(8) A(xf?) = AfOvol = dd* fOvol = —digraa pvol = (div grad f)vol = —V?fvol = — % (V2f).

Problem 14.2(2) dA = d(dd*+ d*d) = (dd*)d = (dd* + d*d)d = Ad, where we have used
d* = 0. Similarly d*A = d*(dd* + d*d) = d*dd* = (d*d + dd*)d* = Ad*, where we have
used (d*)? = 0. The commutativity with the Hodge star is as follows Ax = (dd* 4 d*d)* =
(=)D (dad s+, d s d)x = (—1)"PED+S ()PP yoxd s dk + x dx d)x = (—1)PHDFs &
(1P Py d s d % % 4+ d x dx) = (=1)"PFFS 5 (xd x d + d * dx) = *(d*d + dd*) = *A.

Problem 14.2(3) According to Corollary (14.32), in each de Rham class of closed p-forms,
there is a unique harmonic form. According to de Rham’s theorem (13.32), the equivalence
classes of the closed p-forms form the dual space of the homology group H,(M,R), do the
dimensionality of the space of classes is also b,. The Hodge duality associates to each p-form a
pseudo n — p-form. On an orientable manifold, one may choose an orientation, and the form
corresponding to the pseudo-form and that orientation, thus having a mappint from H? to
H, _,, which is bijective, thus the two spaces are isomorphic, b, = b,_,,.

In the case of the torus, as expected, by = by = 1. The Klein bottle is not orientable, so we
do not expect equality, and so it is, by = 1, by = 0 (see Sec. 13.3b).

Problem 14.3(1) Let the currents through the holes be Iy, ..., I;. The first homology
group of M is spanned by curves ¢; around the holes inside M. According to Ampére’s law,
[, *B = 4xl;, i.e., the currents determine the the periods of *®. Inside M, d * B = 0 (no
currents), and dB = 0, so %@ is a harmonic two-form (d* % B = %d % *B = — % dB = 0), and,
as B is normal to the surface, *® is tangential, therefore, Hodge’s theorem for tangential forms
(14.34) may be used.

Problem 14.3(2) Let a be a tangent form. Choosing coordiantes x', ..., 2™ in a neighbour-
hood of M such that OM agrees locally with 2" = 0, the form being tangent is equivalent to
the existence of a form ~ such that (locally) o = dz™ A+. In this case, da = d?z" —dz" Ada =
—dz™ A da, as d2 = 0, yielding that do is normal.

A form B is tangential if %3 is normal. Now d*f = F(—1)""*D x d % 3, and so if 3 is
normal, so is d % # as shown above, and, consequently, *d*( is tangential.

Problem 14.3(3) Using eq. (14.14),
(Aot 37) = (@) = [t
oM

If « is normal, [ is harmonic, then the second and the third terms vanish (as d*f = 0 and
i*a = 0), therefore so must the first one, which proves orthogonality of the first and the third
sets.

42



Figure 14.14 in four copies (left), and a zoom in on the central point

If 3 is tangent, and « is harmonic, then the first and the third terms vanish (as nor daw =0
and as */3 is normal, i* * § = 0), therefore so must the second one, proving the orthogonality
of the second and third sets.

If a is normal and f is tangential, then

(Ao 1,d75) = (dayd') ~ (a (@20) = [ ansd’B =0,

oM

as (d*)? = 0 and « is normal, therefore i*a = 0.

Problem 14.3(4) We have redrawn Fig. 14.13 in four copies. Also, we have zoomed in on
the corner, and drawn three directions in which the function decreases (as they connect points
on the level set 0 ans -1) with thick black arrows pointing outwards, and the three directions
separating these with dashed lines with arrows pointing inwards.

The two independent 1-cycles can be constructed as follows: one moves in along one of the
decreasing directions, and out along another one. There are three such 1-cycles, but they are
not independent, but any two of them are.

Problem 14.3(5) Let us consider

m(t) — P(t) =+ (m)\,l — b)\,l)t)\_l -+ (m,\ — b)\)t)\ -+ (m)\+1 — b)\+1)t)\+l + ...
= —b)\,lt)\il + (m,\ — b)\)t)\ — b,\+1t)\+1 + ...
= (@ o)+ (T o) F (G F )T = (1 )Q(),

where Q(t) = >, qat?, with ¢, > 0. As all coefficients are non-negative in the last line, therefore
0 = by_1 = byy1 must hold, so

0=my_1 —by_1=(gr-1+q@—2) >0,
my—bx=(gx +q-1) >0,
0=myt1 —bat1= (@1 +q) >0
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must hold too. This is only possible if ¢\ y+1 = 0, yielding my = b,.

3 Lie groups, bundles, and Chern forms

15 Lie groups

Problem 15.1(1) The right-invariant field X and Y must satisfy X, = 0/0z and Y. = 9/0y,
and be right-invariant, that is R, X, = Xj,, (and the same for Y), or, similarly to the treatment
of the left-invariant fields in the book, X, = R4 X,.. This, as for the left-invariant fields, is
obtained by multiplying its matrix at the origin with the group element, but now from the

right, so
B g d (14t 0\ [z vy (x y\ 0O Oz
XgRg*&rE( 0 1) (0 1) t:()(o 0) = %oz TV,

and similarly, Y, = 9/9,. The dual right invariant forms satisfy ¢'(X) = 1, ¢'(Y) = 0,
0%(X) = 0 and ¢*(Y) = 1. This is satisfied by ¢! = dz/x and 0? = —ydz/x + dy. The
right-invariant volume form is o! A 0% = dx A dy/x.

Problem 15.1(2) (i) for any g € G, g is a function g : R* — R*, z + gz (the linear action).
The differential maps a T,R* = R* to T,,R*. The mapping is constructed, e.g., as considering
a curve y(t) derivative at t = 0 is a given vector, v(0) = z, 4(0) = v, e.g., ¥(t) = x + vt. The
image of the vector is g.v = d/dt(g(t))|i=0 = gv, whose matrix is g, so det g, = detg = 1.
This shows that it preserves the eucludean volume form: let T;, « = 1,...,4 be left-invariant
vector fields, so (¢*voly,)(T1a,. .., Tay) = v0olge (9 Tha, - ., 94 Tay) = vOlyy(Tigs, . .., Tage). On
one hand, the euclidean volume does not depend on the point where it is evaluated, volg, = vol.
On the other, voly, (9. T4, ..., 9:Tay) = (det g)vol(Ty,, ..., Tyy) = vol(Ty,, ..., Ty,), which,
compared with the first expression, yields g*vol = vol.

(ii) The group is the manifold {z|detx = 1}, so the tangent space is the dH = 0, where
dH (h) = (det z) Tr(z~h), therefore

T.S1(2,R) = {h € R Tra~'h =0} .

Calculating the inverse of the matrix using Cramer’s rule, and using det x = 1 yields

() = (-1)

which may be used to express z'dat = — 377 (—1)0-DE=D/27dy7,

The differential of the determinant function is

i

(i—1)(4—1)
2 X ,

and so the tangent space is

dH = (det z)(z~1)'da’,

therefore the gradient vector is

(VH)' = (detz) > (~1)

%

(i—1)(4—1)
2

o', |[VH|? = (detz)|z*.
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The euclidean volume form is vol = dz! Adz? Ada® Adz?, and we shall insert here the gradient
vector,

0 = iVH/\\VH||2V01

yielding
x! x? a3 xt

o= || ||2dx2/\dx3/\dx4+ || ||2da:1/\dx3/\dx4— || ||2dx1/\dx2/\dx4— || ||2dx1/\dm2/\dar3
T T T T

and we may express now dz? with the rest, and only the independent one contributes,

1\2 2\2 312 4 1
azdxl/\dxz/\dxs(— () — (%) — (z°) _ T ): I—dazl/\dx2/\dx3.

o1 o 13 e 164 1+ 222

We may, of course, flip the orientation.

Problem 15.2(1) Let us use the series of expz,
expfJ =) i(ej)"
p - n| )

and replace (0.J)" = 0"J", and take into account J? = —I, separate n = 2k and n = 2k + 1,
yielding

1 1 .
exp 0J = Z @(—1)k92k1 + Z m(—l)kgzk—HJ = (COS 9)[ + (SIHQ)J,
k k

where we have recognised the power series of the sine and cosine functions.

Problem 15.2(2) Let us first show (by induction) that

a bn_ a® a™ !
00/ \O 0

for n > 1. Then

and the sums are

1+ i(ta)”/n! i = exp(ta)
o n=1 n=0
it"a"‘lb/n! = (b/a) i(ta)"/n! = b/a(exp(at) — 1)
yielding - -

=

a b
expt(o 0)

(expo(at) a(eXp((llt) — 1)> _
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Problem 15.2(3) The convergence radius of the series of the exponential is infinite, therefore,
we may differentiate term by term.

C eplB) = 3 TnAMB) = A Y = A esp[B(1)]

which completes the proof.

Problem 15.3(1) We start by choosing a set of left-invariant vector fields Xz, R =1,2,...,
dim G, defining the structure constants by [Xg, Xs] = X7CLg. The dual basis of one-forms,
defined by o¥(Xg) = Y is also left-invariant, therefore, as in eq. (15.22),

do¥(Xp, Xg) = =0V ([Xp, Xs]) = =0V (XrChs) = =Cllg = = Y CHyo AoV (Xp, Xs)
Uu<v

for any two basis vector fields Xz, Xg, therefore, the two forms must agree,

1
do¥ = — Z Chso N o = —3 ZC’%SJR ANod.
R<S R,S

The Jacobi identity on the structure constants is proved as dollows: as dde¥ = 0, so using
eq. (4.27) yields

0 =d(do")(Xz, X, Xs) = X (do¥ (Xyr, X)) — Xas(do¥ (X, X)) + Xg(do¥ (X1, X))
—do¥([Xp, X, Xg) + do¥ ([X1, Xs], Xpr) — do¥([(Xas, Xs], X1)

and the terms in the first row are 0 (as they are derivatives of the structure constants along
the vectors). In the second row, we write [X, X5] = X7Ckg, and so on, yielding

CrsCrv + CruyCsy, + O Chis = 0.
Problem 15.3(2) As A% = —plI, the series of the exponential can be separated into odd and
even terms as - -
A" o (S — (=D*p
A
=2 E:@k+1ﬂ 2 2k
n=0 k=0 k=0

where we may replace p* = (sign p)*¥\/psign pzk, thereby obtaining the desired result.
As A is zero trace,

2cosy/p, ifp>0

Tret =< 2cosh+/|p|, ifp<0
2. itp=0

which also yields Tre# > —2. The matrix g above has Trg = —3/2, therefore it cannot be of
the form e for a traceless A.
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Problem 15.3(3) (i) For any element g € Sl(n,R) its columns vy, ..., v, € R" are n linearly
independent numbers. Let us consider their Gram-Schmidt orthogonalisation ey, ..., e,, and
the vectors wy = tey + (1 — t)vy, which agree with , for t = 0, and with e, for ¢ = 1. This
shows that SO(n) is a deformation retract of Sl(n,R). As the latter is connected [see Theorem
(15.5)], so is the former.

(ii) As the group is a deformation retract of SO(3), their homology groups agree. The latter
is a ball in the space if 3 x 3 real matrices with the opposite points on its boundary identified, i.e,
the real projective space RP?. That has (see Sec. 13.3b) Hy(S1(3,R),R) = R = H3(SI(3,R), R),
and all others 0, and from Problem 13.3(1), Hy(SI(3,Z),R) = Z, H,(SI(3,Z),R) = Z/27 = Za,
Hy(SI(3,Z),R) =0 and H3(S1(3,Z),R) = Z and all others 0.

(iii) The general linear group contains all matrices with a non-zero determinant. As the
determinant is a polynomial, therefore, a continuous function of the matrix, the pre-image
of a non-connected set R™ U R~ cannot be connected. At the same time, for all matrices
M € Gl(n,R) we may introduce M (t) = (1—t)M +tM/ /| det M| which connects it with M (1)
having det M (1) = £1. This shows that Gl(n,R) has a deformation retract {£1}SI(n,R), and
so {£1}SO(n) = O(n). As a result, ist homology groups are the direct sum of those of O(n)
with themselves.

Problem 15.4(1) We use eq. (15.33),

. exp(tX) exp(tY) exp(—tX) exp(—tY) — [
X, Y] =l A

)

and (15.17), exp S = ) S"/nl. We expand all exponentials to second order, yielding

(1+tx+%) (1+tY+t2§2) (I—tX+t2§2) (J—tywzf) iy
X, Y] = lim :
t—0 t
XY -YX.

Problem 15.4(2) Let h in the leaf H. Again, by the definition of A, left translation of H
by h~! sends the lead into another, perhaps different, leaf h~'H. On the other hand, h € H
and so e = h™'h € h™'H, i.e., the two leaves both contain e, therefore, they must coincide.

Problem 15.4(3) To show that it is a subalgebra, consider
[A,B]' = (AB — BA)! = BTA" — A'BT = (=B)(—A) — (-A)(-B)
= BA—- AB=—(AB - BA) = —[A, B],
i.e., it is skew Hermitean, and
Tr[A, B] = Tr(AB — BA) = Tr(AB) — Tr(BA) =0,

as the trace is invariant to cyclic permutations. In Sec. 15.3¢, it was shown that su(n), the
Lie-algebra of SU(n) is the set of all skew Hermitean matrices.
In the case of Hermitean matrices, similar calculation yields

[A,B]' = (AB — BA)' = B'A" — ATB" = —(AB — BA) = —[A, B],

i.e., that the anticommutator is a skew Hermitean matrix, so their set does not form a Lie-
algebra, therefore, there is no subgroup of Sl(n, C) whose Lie-algebra is the space of Hermitean
matrices.
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16 Vector bundles in geometry and physics

Problem 16.1(1) It can be defined in one local trivialisation. What needs to be shown is
that this is global: if Y =0
V' (p) = cvu(p)vu(p) =0,

as the transition is linear.

Problem 16.1(2) If the bundle was trivial, one could specify a transportation of a frame
e12(p) in the normal bundle along the curve. As the tangent vector of the curve is e, constant,
there is a two-component matrix function M (t) such that e(p(t)) = e(p(0)) M (t).

The frame eqM (1) at the north pole is identified with —egM (1) at the south pole, only pos-
sible if det M (1) = —1. A continuous deformation is allowed (as in the proof of the triviality
of the normal bundle of a closed curve in Euclidean 3-space in the book), but the determi-
nant of an orthonormal matrix is either + or -1, so it cannot change continuously. This is a
contradiction, so the bundle is non-trivial.

Problem 16.1(3) The normal bundle is a one-dimensional line bundle. If we take a line
connecting two antipodal points, choose a vector at one point, it is identified with the opposite
one at the antipodal point. Its single component therefore must vanish somewhere, therefore,
the bundle is non-trivial, as there is not a single non-zero global section.

Problem 16.1(4) In the orientable case, the same argument may be used as in R3, trans-
porting a frame along the curve, and if necessary, continuously deforming it in the last short
part to match the original frame at 0 parameter value. This is possible as the frame together
with the tangent vector specifies an orientation, and that must be the same as the one at 0
parameter value, therefore, the transported vectors are related to the original ones with an
orientation-preserving transformation. Therefore, the normal bundle in this case is trivial.

In the non-orientable case, if M is such a curve that an orientation cannot be transported
along the curve, then assuming the existence of such a frame would result in the transportation
of an orientation (as the tangent vector is preserved), resulting in a contradiction. Therefore,
in this case, the normal bundle is not trivial.

Problem 16.2(1) The height vector field has one minimum at the point where the surface
touches the table, one maximum at the top, and 2¢g saddle points. Around the maximum and
the minimum, the surface is can be parametrised locally as z = +(z? + 3?), therefore vector
field locally looks like the vector field 2x and —2x on R? near the origin, therefore its index at
both these points is 1. At the saddle points, the surface locally looks like the z = +(x? — y?),
therefore the vector field locally looks like 4+(2x, —2y), which has index -1, therefore, adding
the indices together, the desired result is proven.

Problem 16.2(2) The index of the critical points is 0, 1, and 2, in the order as above. The
Morse indices are mg = m, m; = s, and my = M, where m, s, and M are the numbers of local
minima, saddle points, and local maxima.

The pits-passes+peaks theorem yields (by using a triangulation fitted to the function) that
there is a vertex for each maximum, a saddle point for each edge, and a face for each minimum,
yielding x = by — by + bs.
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As the index of the vector field is m — s+ M = my — my + mo, and this must agree with x,
we have proven Morse’s equality.

Problem 16.3(1) First, let us note that from the definition,
Vi(e. ® €p) = (Vxe,) ® € + e, ® (Viep) = (ew'a(X)) @ ef; + e @ (esw'*r(X))
on one hand, and on the other
Vi(e, ®eh) = e, ® esw r(X),

yielding
1bS b ¢S b 1S 11ibS b S b 1S
w aR:Wa(SR+5aW R, W aR:Wia5R+5aw iR -

By definition,
VA = (e, ® €)X (92 + W Fyg)\?) = e, ® e XTIV, A
yielding

vj)\aR — aj)\aR + w/laijS)\bS — 8j)\aS + w;’lb)‘bR + W/RjS)\aS ]

Problem 16.4(1) Let us use Maxwell’s equations,

d 2 a 1
J— — — 0 = — = — g:
il 7= fa == e

as z is a cosed surface, 9z = ().

Problem 16.4(2) The difference between the two local sections in the overlap region U NV
is

and this multiplied by —ie/k shall agree with

2ie 2ie 2ie
—cppdeyy = —exp ( f;]gz?) dexp (— hqu) = hngo,

which holds.

Problem 16.4(3) Let us consider the extension using the transition formula (16.47), with
the transition function (16.51)

i) = cvol)b(o) = exp (242

and examine this ¢y around the negative z axis, where its value us discontinuous. This shows
that ¢y cannot be the coordinate form of a smooth section of the bundle there, therefore vy
cannot be extended to the whole space outside the origin.
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Problem 16.4(4) Transforming to cylindrical coordinates is © = rcosd, y = rsind, so
dz = cos¥dr — rsinddd, dy = sinddr + r cos ¥dd), so B = Bdx A dy = Brdr A dd. [The same
result could be reached by noting that dz A dy = rdr A di is the area (2d volume) form of the
plane zy.| This is compared with dA = d[(B/2)r*dd] = Brdr A d9.

The vector corresponding to the potential form is obtained with the inverse metric, as
grr = 1, gg9 = 1%, g.. = 1 (all other components vanish), ¢"" = 1, g%V = r=2, ¢** = 1, yielding
A = (B/2)dy, and ||A|? = A’ Ay = B*r%*/4 = b*r?/(4n%a*). For the exterior potential,
Aesterior = bd¥/(27), the norm is || Aexterior||? = b?/(472r?).

At r = a, the two do match, for the inner field, ||A||?|,—, = 0*/(47%a?) and for the exterior
one, ||Acxterior||*lr=a = */(47%), but not smoothly, the interior one is growing quadratically
and the exterior one falling off as 1/r%, the derivative jumps. This is because the iterior has a
constant magnetic field B, and the outside magnetic field vanishes. At r = a is the coil, with
a current flowing in it.

Problem 16.4(5) On one hand, direct transformation yields cyy (y, t) times the above result,
as it is a contribution of this path to ¢y (y,t). On the other hand, using the formula in the

patch V' yields
Yy (z,0) exp [% /Ldt] exp/(—wv).
v vy

Here ¢y (z,0) = cyy(z,0)Yy(x,0) and wy = wy + dlog cyy = wy — dlog ey, so

esxp / (~wv) = exp { / (—wr) + log ever(y, £) — log ey (z, )

therefore the two expressions agree, and gauge invariance is proven.

17 Fiber bundles, Gauss-Bonnet, and topological quantisation

Problem 17.2(1) Let us note that the projective space RP™"! is the set of unoriented lines
(i.e., 1-planes) in R", RP"™! = Gr(n—1,n). We may thus follow the construction of sec. 17.2b.
The orthogonal group O(n) acts naturally on R™. The subgroup that sends a given space into
itself acts as O(n — k) on the orthogonal complement of a k dimensional subspace, and in the
k-dimensional subspace O(1) = {£1} flips the orientation, therefore

O(n)
O1) x O(n— k)

The dimension is therefore that of O(n) minus that of O(n — k), n(n —1)/2 — (n — k)(n —
k—1)/2 =k(2n -k — 1)/2.

12

Gr(k,n)

Problem 17.2(2) The two curves were C' = SO(2), rotations around the z axis (leaving the
z axis invariant), and C” the coset of the rotation diag(1l, —1,—1).

We construct a mapping from SO(3) to RP? as follows. To any group element (rotation) g
we assign the line that correspond to gn, where n is the north pole. In this way, the projective
space is the factor space SO(3)/H, where H is the group leaving a point in the projective space
invariant. We shall show that this is the subgroup generated by C U C".

Factoring the group SO(n) by the curve C' yields a sphere S?, as shown in the text: any
point on S? may be written as obtained from the north pole by a rotation, and rotations leaving
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the point p invariant may be written as ghg~'g where gn = p, n is the north pole, and hn = n,
ie, heC.

Consider a point p € S%, and o € S? beint the point of S? on the positive z axis. For both of
these, there exist group elements in SO(3) such that g,n = ¢, g,n = x. Let ¢ = diag(1, —1,1),
then g,9;'cge9," = 9p9; ' Cgant = gpg; ' cx = —gpg, ' = —gyn = —p, so factorising with C’
identifies antipodal points in S2.

Problem 17.2(3) Any k-frame can be extended by adding n—k vectors into an n-frame. The
space of n-frames can be identified with O(n). The extension is ambiguous, as any orthogonal
transformation that leaves the original £ vectors invariant can be applied on the additional
vectors.

S"~1is therefore the k = 1 case, S"~! 2 O(n)/O(n—k). In the text S*~! = SO(n)/SO(n—k)
was shown. An orientation flipping transformation, in this sense, “can be cancelled”. The same
holds for the Stiefel manifolds for £ < n, but not for £ = n.

Problem 17.4(1) The transition function for the two coordinate patches for the manifold is
constructed in sec. 1.2d. in the book, yielding w = f,.(z) = 1/z. The transition function ¢,
is a mapping between coordinates of vectors in the two patches. Note, that a coordinatisation
(inverse of a chart) in a patch is a mapping p. : C — S?, and a vector in the tangent space
may be coordinatised by pushing a vector forward by p.., S0 cu. = (Pus) 'p. = (p,' 0 p.)s. If
w = fwz(z) - pJI(Pz(Z)) = 1/27 e, fu: = p;1 O Pz, We get Cy, = Jwze (sz*)z(C) - _1/Z2C-

A tangent vector may be coordinatised by ¢,, as follows: ¢.v = (p;!).v and ¢,v = (p').v.

Using the construction in sec. 1.2d, we get for the point on S? C R?, p.(2) = (z,y, (1 —2? —
v?)/2)T /(1+22+y?) where z = z+iy, and similarly p,,(w) = (u,v, (u?+v2—1)/2)T /(1+u2+v?).

The tangent vectors are obtained as a derivative of the parametrisation, v = 0,p.(2)¢ +
Oyp.(2)n where ¢, = ( = £ +in and v = Oypy(w)k + Oppy(w)A where ¢, = p = kK + i) and
= Cuz(2)C.

The calculation yields |v|* = |¢.|%/(1 + |2]?)? = |dw|?/(1 + |w|?)?. Substituting u = —&/2?
and w = 1/z yields |¢.]?|272| = |pw|?|w]| 2 = |VI*(|2] + |2|71)? = [v|*(Jw|™! + |w]|)?. This is the
metric singular at the poles. At the same time, (1 + |2]?) 72?0, = (1 + |w|?)72|¢w|> = |V|? is
both independent of the patch used and non-singular.

Problem 17.4(2) According to eq. (17.30),
Oe k
w= (e(a),de(a)) = <e, W> da”.

Choosing another basis €/ (a) = e(a)e®@ yields
w' = (€/(a),de'(a)) = (ee”, d(ec”)) = (ee”, (de)e” + ee’idB) = w +id},

which is the correct transformation rule.
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Problem 17.4(3) We take the exterior derivative of 6,

Oe P, Oe ;
d<e £>d aoﬂ < 8ak>da /\d(l/

2
:<8e ae>doﬂ/\da +< ae >doﬂ'/\d0/’C

dad’” Dak " 0ad Dk
, de Oe ; &
:1Im<@,@>doﬂ A da 5

where in the second line, the second term vanishes due to the symmetry of partial derivatives
and antisymmetry of the wedge product. As the wedge product is antisymmetric, in the same
line, the scalar product may be antisymmetrised, and (a, b) — (b, a) = (a,b) —(a, b) = 2iIm(a, b).

Problem 17.4(4) The covariant derivative of (¢, is
Ve = (Ve + ¢eidy = p(w +idy)e”,
and along the curve C, according to eq. (17.33) dy = iw, therefore idy = —iw, so the covariant

derivative vanishes along the curve.

Problem 17.4(5) Let us introduce polar coordinates, z = re'¥; so
dz = e%dr + ire'?dyp .
The basis section is _
ev(2) (1,re%)”
Z)= — .
U (14 r2)1/2
This yields . . .
(0,dre'® +ireledp)  (1,re¥)T
(1+1r2)1/2 (1 + 12)3/2

dey = rdr,

and so

ir?de
1+7r2’
which is eq. (17.38). Taking the exterior derivative yields

wy = (ey,dey) =

r? 2irdr Ade
dwy =id—— ANdp = ———
TR (147r2)2

which is eq. (17.39). The integral is

i0 rdrdgp < rdr < du u ]~
¢ 2m (1+172) o (1+712) o (1+u) 1+uf,
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18 Connections and associated bundles

Problem 18.1(1) An element of the group is of the form

e )
() -5

B dz gy — ¥dz
dgg1:(8 y090 .

Problem 18.1(2) The connection form has the property

therefore

and similarly

VeU:eU®wU, VeV:ev(X)wv.
The connection form therefore tranforms as
Wy = C&%/WUCUV + C{]%/dCUV ,
and
wy = gy mwugu + g9y dgu
and
wy = gy ' mwygy + gy dgy -
Using the expression given in the problem for a point in the fiber, we obtain f = eygy =
eycyvgy = eygy yielding gy = cjygu, s
* _ —1 * -1 -1 -1 d _—1 —1 d —1
Wy = gy CuvT WyCyygu + Gy Cuveyydgu — Gy CuvCyydcuveyy gu
where we used C(?%/CUV = e, therefore dc{]%/cUV + c(}%/chv = 0. We substitute wy, yielding

wy = g mrwrgy + g5 degveygu + gp gy — g devvepygu = wi -

Problem 18.2(1) (i) Consider a globally defined n-form o. In any coordinate frame, we may
write this as
o = 0'12,,‘nd$1 Ao Adz” s

and on an overlap U NV, the transition function is obtained as follows,
B oxlt Ozl Oxy

- ale T axjn O-Uvjl ----- Jn = det axv O-Uvila"'7i7L )
14 |4

O-Vvilv---fin

i.e., it satisfies the transformation rule of a section of the determinant bundle.

(ii) In an associated bundle with representation p, the connection form  is constructed,
according to eq. (18.24) as Qy = p.w. What we need to obtain is the representation p, which, in
the case of the determinant bundle is obtained as follows. In the tangent bundle, the transition
functions are ¢}, ;; = dxy /zy, so cyy = det(cl,;) ™t = 1/ det ¢},;. Therefore

Q=p.(w)=(1/det)sw = —Trw,
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as the derivative of the determinant at the unit is the trace, and the tangent to 1/det is
(1/det), = (—1/det?)det, = — Tr as dete = 1.

(iii) In the case of a Riemannian manifold, the structure group is O(n), which has two dis-
connected components, therefore the determinant cannot change sign in one connected overlap
of two patches. Let U NV be a(connected component) of an overlap, and ¢ the sign here, in
any case, let Qp = — Trwy and Qy = — Trwy. We know that wy = (/) " wy.

Let us consider a section ¢ of the volume bundle that has its support within UNV. We shall
suppress the indices 1,2, ..., n on the components of the pseudoforms, simply writing the single
component without indices. This transforms as ¢y = |det ¢}, |y, therefore ey = det ¢}, év,
i.e., these define a section of the determinant bundle, where Qy = —Trwy and Qy = — Trwy
yield a correct connection form, and the covariant derivative transforms as follows

Vuxov = X(ov) — Trwy(X)ou ,
Vyxepy = X(€¢V) —Tr WV(X)€¢V = cyuVuxPu

This just yields the correct transformation law
Vvxov = ecyyVuxou = C/\/UVUX¢U-

Problem 18.2(2) Let us consider the derivative of the representation at the unit element.
The Lie algebra of SO(2) is the set of antisymmetric matrices, and the derivative of p acts as
follows,

. 0 -1 .
ps s g — IR, 99(1 O)r—u,

which can be seen by considering the inverse mapping an taking its ordinary derivative. The in-
verse mapping from U(1) — SO(2) is given by substituting § = —ilog p(g) into the parametrised
form of the matrix.

Comparing the antisymmetric matrix

0 w12 w w
12 — —W21
Wa1 0 ) )

and the above one, yields for the connection in the line bundle iws, just as expected.

Problem 18.3(1) Let us calculate the covariant derivative, a p + 1-form Ad(G) field
Vi =dy + [w, ¢],
and so, using eqs. (18.8) and (18.9),

Vi = &% + [w, dy] + dfw, ¥] + [wlw, 9]
= [dw, ¢] + [w, [w, ¢]]
= [dw, ¢] +w A lw, ¥] = ()P w, ¥] Aw
=[dw, Y]+ wAwAY — (“1POAYAw— (—1)PTTOAYPAw - AwAW
=WAWAY —YPAwAw=[wAw,].

(An important part of the derivation was that w is a 1-form, i.e., in egs. (18.8,9), ¢ = 1, and
w A w is a 2-form, there ¢ = 2.)
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Problem 18.3(2) To show that ¢ A v is a section, we need to verify that its transition
functions are correctly that of an AdGI(N) bundle, i.e., that

(dAV)y =Ade,u(@ NPy

Using the fact that G C GI(N), i.e., Ad, acts on a matrix M € g((N) as M — gMg~" for any
g € G, and, considering their values on a p + ¢-tuple of vectors

(P Ay = by Ay = cvuducpe N covibucpy = covou Avucpy = cov(d Ab)ucy -

To show the Leibniz rule, note that on the adjoint bundle, the connection form acts as a
commutator,

Vo =do+ |w, 9],

Vi =dy + [w, 9],
|see eq. (18.35)]. The exterior derivative satisfies the Leibniz rule, therefore, it is the second
term that needs to be considered, using eq. (18.9)

W, p AN =wAPAY = (=1)PT P AP Aw
=W, AV + (=IO AwAY + (=1)PO A w, ] = (=1)PP Aw A Y
= [w, Q] AP+ (1)) A [w, 9],

which completes the proof. The result for the curvature form follows from the Bianchi identity
(18.41), VO = 0, which appears in all monomials.

Problem 18.3(3) In order that the trace is defined, the structure group must be a matrix
group, G C GI(N). In that case, the group acts as follows,

dv = cvuducy

and so
Tr ¢y = Tr(cypdveyy) = Trdy,

where we have used the cyclic symmetry of the trace. This shows that the ordinary form Tr ¢
is globally defined.

Problem 18.3(4) What needs to be shown is that if the group valued functions {hy} fit
together to form a section of the adjoint bundle, then the transformed functions {hygy} of a
section of the principal bundle also globally define a new section, i.e.,

—1
hvgy = cvvhueypevogr = evohoge

Note: sec. 9.4b discussed gauge transformations in the case of the frame bundle, as a change
of frame, in the intersection of two trivialisation patches. If we choose one of them, V', to be
the same patch on the base manifold with a different frame in the space of sections, we connect
changes of frame to the above definition of gauge transformations.
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19 The Dirac equation
Problem 19.2(1) Let us first give a simple expression for the product of two Pauli matrices,

from egs. (19.6) and (19.18), as

00 = ([O'k, O’k] + {Uj, (Tk}) = ieijkai + 6]k[ .

DO | —

Using the product,
(0-A)(0-B) = A/ B*0;0), = A1 B*(§;,+ieijroi) = AABI+i(AxB)'o; = (A-B)I+i(AxB) o,

proving (19.19). In particular, (o - A)* = |A*I, or simply = I if A is a unit vector.
The formula (19.20) for rottion follows from here as in Problem 15.2(1), by separating the
odd and even powers of o - Af/(2i), i.e., setting J = —io - A and

0J 1 n
exp7 = ZH(QJ/% ,

n

and replace (0J)" = (0/2)"J", and take into account J? = —I, separate n = 2k and n = 2k+1,
yielding eq. (19.20),

expf) = @(4)%9/2)%”2 mH)kw/z)%ﬂJ _ (Cos g) I—i (sin g) oA

Multiplying (19.20) twice, replacing A, 0 by B, ¢ in the second one, using eq. (19.19) and
collecting terms, yields eq. (19.21),

o-A oc-B
R1Ry = exp (TH) exp (T¢)

()11 o) (e2) - (2) )

0 0
= <cos§cos§—sin§sin%A~B> I

6 6 0
—io - sin—cos?A—i-cos—sin?B—i—sin—sin?(A><B :
2 2 2 2 2 2

Using eq. (19.21) in the case when § = ¢ = 7/2 and A = k and B = j we have 1/v/2 for
all the sines and cosines and A - B = 0 and A x B = k x j = —i, the unit vector along the
negative x axis, and

1. . —i+j+k 1. V3 —i+j+k
RR :_]_ —:—I— R PR
1119 5 10 9 9 120' \/g s

which is a rotation with an angle a = 27/3 around the axis (—i + j +k)/v/3.
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Problem 19.3(1) The mapping is defined follows. We map M* to H(2,C), the set of all
Hermitean matrices, by

r—r, =2 =27, and x— 2* =2"nr,
and the inverse is given as
VR )
¥ =3 Tr(7jz,) .

Note that det z, = det2* = —(z, z) and z.2* = z*z, = (z,x)I.
With these, a mapping A : SI(2,C) — Ly is defined as

A A(A)z = ()t Az AT
o (A(A)z), = Az AT,

For this to be a representation with Ly matrices, we need to demonstrate that (i) it maps into
Ly, i.e., it preserves the scalar product of Minkowski space, (ii) maps product to product, and
(iii) maps inverse to inverse.

Let us first consider (i), as seen in the proof of thm. (19.40), it is sufficient to demonstrate
that it preserves (x,x) for all z € M, then the product of any two vectors can be derived via
the polarisation identity. Let A € S1(2,C),

(AN A)z, A(A)z) = —det(A(A)x), = — det(Az,AT) = —det(A)*det 2, = —detz, = (z,7).
For products, let A, B € Sl(z, C),
(AM(AB)7), = (AB)2.(AB)" = AB2,B" A" = A(A(B)x). A" = A(A)A(B)x, .

Similarly,

AA™YA(A)z), = A(A Az, =z, .

20 Yang-Mills fields
Problem 20.1(1) We follow the derivation in sec. 20.1a,b, with

L= g0 +2p0,
to obtain the Euler-Lagrange equations in the form

) .
o = 2= 20" =0,
and the last term is twice the Laplacian, (1/,/9)0(,/99°*0¢/0x*)/0xi. The Euler-Lagrange
equation is the Poisson (or, in the case of a pseudo-Riemannian manifold, Klein-Gordon) with
potential p.
The essential (or imposed) boundary condition is d¢p = 0 on 0M, i.e., the variations must
vanish on the boundary. The natural boundary condition is

oL
0y

The natural boundary condition sets the normal (covariant) derivative of the scalar field ¢ to
0, i.e., it generalises the Neumann boundary condition.

N; =2¢"" ¢ N; = 0.
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Problem 20.1(2) (i) The original form of Jacobi’s equation (4.10) is

dy’ ). G
- i
dt ; oxi =

where x = z(t) is a solution to the system dz/dt = X,. Therefore,

vY: oyt oxi
= — 4+ XY = — +T}
dt ATRRRL (axk T

ka) VP =YV, X = (VyX)'.

We have used the symmetry of the Levi-Civita connection.
(ii) Let us now consider two vector fields, X and Y, and use the above result,

Y,z Y Z YA
<d} '~ <th >Z> + <Ya vd_t> = (WX, 2) + (Y, V2 X) =Y'Z/ X5,

therefore the invariance of the fields, d(Y,Z)/d¢t = 0 for arbitrary Y*(0) and Z7(0) yields
Killing’s equations.

(iii) Let now 0x = J be a variation due to the action of an infinitesimal isometry, i.e.,
0x(s) = doy(z(s))/dt|=o, and consider

d(ox, T)
ds

(iv) The first derivative is

d(X, X . .
% =2V X, X) = 2X'TV X, ); = —2X'T; X, = —2(Vx X, T).
The second derivative is therefore, taking into account that 7" is the tangent of a geodesic,

VT =0,

. 1 .
= (VxJ, T) + (J,VT) = (VpJ, T) = J;, T*T" = §(Ji/k + o)) T'TF = 0.

d?(X, X o o o
<dT2> = —2VrVxX,T) = 27T (X" X 1.) jj = —2T"TVX* ); X, g, — 2T TV X X 1
As X is a Killing vector field, X} /; = — X, yielding, for the first term,

2T T XY )i Xy = 2T TV X% ) Xy = 2(V 7 X,V X)),
and in the second one, we use eq. (11.23) as X'/, = X'/ + R X™ yielding
2T T XX,y = =21 TIX X — 2 R iy TV XFX™ = 2T TIX* X, 50 — 2(R(T, X)X, T,

where the last term is = —(R(X,T)T, X), due to the symmetries of the Riemann tensor. The
other term vanishes due to the antisymmetri of X;/;; in 7, j. Collecting the terms,

d*(X, X)
ds?
Let us now choose the (n—1) orthonormal T, such that they are orthonormal and orthogonal

to X. Note that due to the anti-symmetries of the Riemann tensor, R(X, X)X = 0, so that
term drops out from the calculation of the Ricci tensor,

= 2(R(X, T, X) +2(Vr X,V X).

Z RZ]lezTgYXkT(i = Z RijlecinTle = leXle ,
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yielding

A2(X, X o
3 % = —2R;X'X7 +> "2V, X, V1, X),

[0}

which is > 0 if the Ricci-curvature is negative definite, so (X, X) cannot be maximal at p,
proving Nomizu’s theorem.

If M is compact, any continuous function on it would assume its maximum at some point
p, which would contradict Nomizu’s theorem. This proves Bochner’s theorem.

Problem 20.1(3) (i) A small change in z produces the displacement dx, f'(z) cos Jdx,
f'(x)sindéx and a small change in ¥ the one 0, —f(x) sin¥dd, f(x) cos¥éd. The two are or-
thogonal, and the metric is

ds? = (1 + f'(z)?)da® + f(z)*dv?.

(i) The two unit vectors on the plane are e, = (1/4/1 + f?)0/0x and ey = [1/ f(x)]0/IV, so
the unit normal of an arc-length parametrised geodesic may be written as T = cos aey+sin ve,,
and this vector makes an angle o with the lines of latitude. As J is a Killing vector, its dot
product with the tangent of the geodesic is a constant along the curve [see eq. (20.10)],

(J,T) = f(x) cosa = const. along C'.

(iii) Using the relation @ = f(z)cosa = const. we may calculate the cosine of the angle
where at given z as cosa(x) = f(0) cos(0)/f(x). As the function is monotonous, and decays
as © — —oo to 0, there is a value —a? < 0 where cosa = 1, where f(—a?) = cosag. The curve
cannot cross this line, it is tangent to the latituse circle here.

In the z > 0 side of the horn, cosaw = cos(a(0))f(0)/f(x) — 0, i.e., the curve approaches a
curve at constant 6, orthogonal to the latitude circles.

Problem 20.1(4) (i) Let us construct the two orthonormal vectors, e, = yd/0z and e, =
y0/0dy. The unit tangent of a geodesic then is T = cos we, + sin ae,. The conserved quantity
corresponding to the Killing vector 0/0x is

k= (T,0/0x) = (1/y)g,, =y ' cosa.

This is constant, as in eq. (20.10).

(ii) Consider the straigh horizontal line, which, when parametrised with line length, i.e.,
x = ys, y = const, which has dz/ds = y, and dy/ds = 0, and add a variation vector, oz,
0y, which, in order to be a variation between two arc-length parametrised curves, must satisfy
(T, 6x) =0, i.e., its = component must vanish, then

(5/ ()" + y,(S)Q]ds = /[x'Q]ééds =— / iéyds <0,

y2

where ' =y, ¥ = 0 and 2/62' = ¢/dy' = 0.

(iii) Let us assume that two metrics are conformally related. The angle between two vectors
has
9(v,w)

cos Z(v,w) = )
VW) = et viatw W)
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and ) \2
cos /' (v, w) = g, w) 9(v, w) =cos Z(v,w).

VI vgw) NV v (W, w)
(iv) Consider the equation derived in part (i) of the problem, y~! cosa = k, the derivative
of which w.r.t. sg is

d a
—y‘Q—y cosa —y tsina— =0,

dSO dSQ
which may be solved for da/dsy, and dy/dsy = sin o my be inserted, yielding

do
dSO

1dy

— = —yleosa=—k.
dSO

= —y tcosa(sina)”
If the geodesic is not a vertical line, then cosa # 0, and on the upper half-plane, y > 0, so
k > 0, the line is not straight, but an arc of a circle. At the highest point, dy/dsy = 0, so
a=a =0, and so k = yy'cosag = y,*. This yields o/(sg) = —k = —1/yo, the angle
changes uniformly with Euclidean arc-length. It reaches x = 0 at o = £+7/2, where dy/dsy =
sinada/dsy = —ksin(+n/2) = Fk and dz/dsy = cosada/dsy = —kcos(£m/4) = 0, which
shows that it is orthogonal to the z = 0 line.

Problem 20.2(1) The Dirac Lagrangian is given by eq. (20.18),
11~ . o .
L= 5[990 = 0070 = mi, (20.18)

where 1; = Wi”yol Whenderiving variational equations, we use eq. (20.7), but when taking
derivatives w.r.t. 1,, we multiply the result (from the right) by (i7°)~* = i7° (note, that in the

conventions of the book. (7)* = —I). The result is the same as if we took derivatives w.r.t.
1, yielding

0L, 1 .

= = __7]¢a

oY) 2
and o .

€ — 2N —

o0 2 i —my,

yielding

%vj i —my — 0 <—%v’¢) =0 —mip =@ —mip =0,

which is the Dirac equation. We can also take derivatives w.r.t. 1,

oL, 1-
€ ZohAd
B(00) SV
and o .
81; ~ 79 j¢7j—m¢>
yielding
i ~
P —m=0.

60



Problem 20.2(2) In eq. (20.23), it was shown that with the the Dirac Lagrangian, with the
derivative replaced by the covariant derivative, contains a term A;J7, therefore

0L,

J=_=
OA;

and, as A; is a section of T*M, J7 must be a section of TM, according to eq. (20.3).
The transformation properties of the current are derived as

i = diyp = YT p(A) 10 ip(A)e = Tin p(A) M imp(A)y = Pip(A) " mp(A)d = (A1) J;
as ¢ = ¥1in°, and we have used eq. (20.26) in the form p(A)f7° = 4°p(A)~", and (19.44) in the

form (A1) = p(A)~'v;p(A). The tranformation rule we obtained is that of the cotangent
bundle T*M. If J, transforms as a covector, J* does as a vector.

Problem 20.2(3) Applying a gauge transformation changes ¢ +— e, 1; — zﬁe_ia and
A +— A+ da, so the interaction terms transforms as

AjJ7 = Ajipyiep = (A + dja)ie Il = (A; + 0,)ihyi = A J7 + 0007 .
Also, as the current is conserved [see thm. (20.8)], J7,; =0
(OéJj)/j = @-onj + Oéjj/j = @a]j N

S0
/Gjaﬂ\/ﬁdx:/(aﬂ)/j\/ﬁ:/ aJ'N;dS =0,
M M oM

if J has compact support, as then it vanishes on the boundary, showing that the integral of
A;J7 is unchanged.

Problem 20.3(1) The transformation rule must be that of a connections, so, if a gauge
transformation acts as

W g lwg+ g7 dg W e g wg + g7y,
for their convex combination, w, = (1 — a)w + aw’ the same holds,
Wa = g 'wag + g7 dg.
Problem 20.4(1) The Lie algebra su(N) is the space of skew Hermitean matrices,
su(N) ={X e CVV|XT = - X},
We shall show that the scalar product
gxg€E(X,Y) = (X,Y) = —Tr XY

is real, symmetric, and positive definite.
The scalar product is symmetric, as Tr XY = Tr Y X for any two matrices.
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It is real, as the trace of a matric and its transpose is the same, and the trace has the cyclic
permutation property, so

(X, V)= -—TrXY = —Tr(XY) = —TrY"XT = —Tr XTYT = - Tr XTYT = (X,Y).

Positive definiteness may be shown as

(X, X) == XX =) Xy X;; =) _[Xi;? >0,
2,7 1,7 1,J

as )(Jr = —X, i.e., le‘ = _Xij or in = —XZJ

Problem 20.5(1) Starting from eq. (20.50), let us choose i =0, j = 1, k = 2, yielding
OoBs — 02 By + 01 By — iq {[Ao, B3] + [A2, —E1| + [A1, Eo} =0,

which is the 3rd component of

B
curlE+%—t:iq(AOB—BAO+A><E+E><A).

The other two components also yield the components of this expression.
Choosing 1 = 1, j = 2, k = 3 yields

01By + 03B3 + 02By — iq ([Ay1, B1] + [As, Bs| + [A2, Bs]) ,

which can be written as
divB=ig(A-B—B-A).

Problem 20.5(2) Let us first consider
1
F:dA—iqA/\A:dA—iqg[A,A],

where the coefficients of dt are

OAY |
E2 = d¢ - 7 - 1Q[A17¢] )

where we have expanded
ANA= (A" +odt) A(A + pdt) = AP ANAY +odt A AL + AP A gdt = %[Al,Al] + [AY, ¢dt],
and the part not containing dt is

B?=dA' —igA' AA' =dA' - %q[Al,Al] :

Continuing with the Bianchi identities VF = dF — ig[A, F] = 0, here the terms containing dt
are
oB?

dE' — —
ot

= iq ([Ala El] + [¢7 BQ]) )
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and the ones that do not contain d¢ are
dB =ig[A', BY.
For the Yang-Mills equation we need
*(E' A dt) = +E',
which is esily seen in component notation. Similarly,
+xB? = —x B2 A dt,

yielding
«F = — B2 Adt ++E'.

so, d x F' = 0 yields, from terms not containing d¢
d* E =ig[A', xE?],
and from the coefficients of dt,

0 * E!
ot

d=B = +iq ([A", *B?] — [¢, *E']) .

Problem 20.5(3)
0(0,%0) = (00, x0) + (0, %00) = (Viw, *0) + (0, *Viw) = £(dw, V* *x 0) + (%0, Viw),

where in the first term, we have used the definition of V*, and in the second one, the symmetry
of the scalar product, and its definition,

(a,*ﬁ):/Ma/\**ﬁ:j:/Ma/\ﬁ:j:/Mﬁ/\a:(ﬁ,*a).

The upper sign is for the Riemannian, the lower for the pseudo-Riemannian case. In the first
term, we use

Visl=—xVxx0=FxVO=0,

where we used the Bianchi identities. In the second term, we again move the covariant derivative
to the other side, and proceed the same way.

Problem 20.6(1) What is to be shown is that

% //M KdA = ij(eU) — % fgl dZ(ey,ey). (20.69)

The vector fields ey and ey are shown in fig. 20.4. Both fields are singularity free, so the first
term on the right in eq. (20.69) vanishes. The left hand side is evaluated as follows: the Gauss
curvature of a sphere is K = 1/r2, where r is its radius, and the surface of the half-sphere is
2712, yielding 1 for the left hand side. The vector field ey shown in the figure rotates twice
around the tangent of the equatior while moving around it, in negative (clockwise) direction,
therefore the integral in the second term on the rigth is —27.
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Problem 20.6(2) (i) The frame V is flat, and on the boundary 5%, wy = g~'dg. If the frame
could be extended into the interior, then so could be g. The degree of the mapping g equals

the integral,
deg(g):/ g*VolG:/ dg*volG:/ g*dvolg =0,
53 B4 B4

where volg is the Haar measure on the group G normalised to unity, and B* is the ball whose
boundary is S3.

(ii) The mapping ¢ is constant e on the sides of the can. Therefore in the integral, the side
does not contribute. The negative sign is due to the choice of orientation of D, i.e., that its
normal was chosen time-oriented, and not towards the outside of the can.

(iii) The can is homotopic to the boundary S®. As it is deformed into it, the integral must
change continuously. It is also an integrer, therefore, it is constant.

Problem 20.6(3) (i) In the limit ||x|| — oo, in any given direction x = At, ||A|| = 1, the
vector multiplying the Pauli matrices has a limit

1mx
([[]f? + A2)1/2

— iTA

and so, using eq. (19.20), g(x) — —1, independent of the direction.

(ii) Let us consider again a given direction, x = tA. In that case the angle parameter in
eq. (19.20) increases monotonously from ¢ = 0 (at the origin) to 7 at ¢ = oo, so the matrices
cosa+isin a(o - A), always differ from 7. At the origin, the derivative of the mapping is given

as .
inx - o

Al

which is invertible (using the trace formula). This shows that 0 is a regular value.

GoxX =

21 Betti numbers and covering spaces

Problem 21.1(1) The definition of the Cartan 3-form is
Q3 =TrQANQANQ,,
which is evaluated in eq. (21.5) on three Lie algebra elements, yielding
(XY, Z) = 3(X, Y], Z),

using the Ad-invariant scalar product. Let us consider the basis dual to a frame of left-invariant
1-forms 0%, X;. Then

()50 = Q3(Xs, X5, Xip) = =3([X4, X;], Xp) = =3(C1, Xy, Xy) = =3guCl; = Crij = Cijie -

The antisymmetry is a consequence of that of the wedge product.
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Problem 21.3(1) We use Synge’s formula (12.6),
L
L"(0) = (V3J,T)§ +/ {IVeI|* = (R(J, T)T,J)} ds,
)

and use the form of J, and that the e; are orthonormal. Due to the form of J;,

Vol = Vr(f(s)ei(s)) = f'(s)ei + f(s)Vre; = ['(s)es,

and also .
<R(J, T)T, J) = f(s)2<R(ei,e1)e1, ei> = f(s)ZRilil = f(S)QRZh‘l .

The boundary term vanishes, as J vanishes at the endpoints. All this yields
L .
L0 = {767 = FP R} ds.
0
The second formula is simply summing up, noting that R';;; = 0 due to the antisymmetry
of the Riemann tensor in any of the two index pairs, and the definition of the Ricci tensor as

Rji = R ji.

Problem 21.3(2) Substituting the function f into the result in the previous problem,

iL’i’ / Z‘—cos—
i=2

N L 2 2(p 2(n —
_ w(n—1) _/ esin? WLSdS m*(n—1) L L |:7T (n—1) —c] |
0

2L T 2L 272

sin—( Ric(T, T)ds ,

If the term in the brackets is negative, the curve cannot be a length-minimising geodesic (as
there is a shortening variation). The term in the brackets is negative is L? > 7%(n — 1)/c.

Problem 21.3(3) The Ricci curvature of this sphere is obtained as follows: as its cross
section is a circle, its sectional curvature is 1/a?, and using eq. (11.67), the Ricci curvature is
Ric(T,T) = 37, 1/a® = (n—1)/a?, that is C. So if L > 7a then it is not a length minimising
geodesic.

Geodesics on spheres are main circles. The ones longer that ma are the ones that are larger
than half an equator. These are clearly not length minimising, as they can be shifted off the
sphere.

Problem 21.3(4) For the theorem to hold, the curvature has to have a lower positive bound
¢ > 0, whereas in the case of the paraboloid, it approaches 0 as 2% 4+ y?> — oo.

Problem 21.3(5) (i) Let J(s) be a variation of the geodesic C, such that J(0) = 0, i.e.,
it changes ¢ but not p, and also note that C' is a geodesic, VT /ds = 0. The first variation

formula, eq. (10.4), yields
L'(0) = (J,T)q =0,

as (' is a minimising geodesic.
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(ii) According to Synge’s formula,

L}(0) = (Vpd, T),, +/0 {19'(s)]* = |g(s)|*R'1:1 } ds,

and the first term is, according to eq. (11.50),(V3J, T) = B(J,J). Summing up for n such
variations, Y ., g(L)?B(e;, ;) = g(L)*(H(q) — (VxT,T)) = g(L)*H(q), ad C is a geodesic.
Now we proceed as in prob. 21.3(1), arriving at

n L
> L(0) = g(L)*H(q) +/ {(n=DIg'(s)* = lg(s)|’Ric(T, T) } ds,
=2 0
and inserting g(s) = s/L yields the desired result, as fOL g'(s)%ds = fOL(l/L)st =1/L.
(iii) As C is a minimising geodesic, L7(0) > 0, and so is their sum. On the other hand,

. —1
O<ZL;’(O)<h+nT,
=2

and the last formula, h + (n — 1)/L decreases with L and reaches 0 at L = —(n — 1)/h =

(n —1)/h].
Problem 21.4(1) The curvature tensor is defined as
R(X,Y)Z =VxVyZ —VyVxZ - VixvZ,
and we use VyZ = $[Y, Z], etc., to obtain
R(X,Y)Z = 1[X.[Y. 2] - {Y,[X.Z]] - [X,Y],Z]. )
The Jacobi identity says that any of these double brackets plus its cyclic permutations vanishes,

e.g.,
[Xv [Y’ ZH + [Yw [Z7XH + [Z> [X’YH =0,

which, using the anti-symmetry of the Lie bracket, can be rewritten as [X, [Y, Z]|]| = [Y, [X, Z]]+
[X,Y],Z], the first term on the right cancels the second term in eq. (*), and the second one
1/2 of the third, thereby resulting in

1
R(X,Y)Z = _ZHX’Y]’ 7],
which is what was to be proven.

Problem 21.4(2) Eq. (18.32) tells us that
adX(Y) =[X,Y]=0.
Using eq. (18.33),

t2
XY =Y + X, Y] + E[X, X, Y]] +---=Y.
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Using Ade’XY = X from eq. (18.32) yields eXYe "X = Y, which, when exponentiated,
yvields exp(eXYe X) = eY.

Note: not assuming that G is a matrix group, we have shown AdusxY = Y and also
exp (AdeY) = e¥.

Next we need to show that eXeY = eYe!X, or, eXeYe X =Y. Let us add a parameter s,
and show that

etXesYeftX — esY 7

for all s. On both sides of the equation, there is an element of a 1-parameter subgroup at the
same parameter value. To show that they agree, it suffices to show that their tangent (d/ds)
at s = 0 agrees, which is AdsxY on the left, and Y on the right, which do agee.

Using thm. (21.11), the group is geodesically complete, any g € G can be written in the
form of e¥. We have thus shown that e® commutes with all of G, so it is in the centre.

Problem 21.4(3) The torsion is defined as
7(X,Y) = VyX - VxY — [X,Y].

Also, Tke2 = 7(e;, ex), so let us evaluate this. As Ve = e ®w = 0 for the flat connection, only
the last term remains,

Tie; = —[ej, ex] = —Clre; .

22 Chern forms and homotopy groups

Problem 22.1(1) If the structure group is a subgroup of U(N), then w is a «(N) valued
form, i.e., its value is an anti-Hermitean matrix, w! = —w,. Let us consider the conjugate of the
determinant, det(I + i6/27) = det(I —i0/2x). On the other hand, wl = —&T, so @, = —wI,

and so det(I +i0/2m) = det(I +i07 /27) = det(I +i/27), as the determinant of the transpose
is the same as that of the matrix itself.

Problem 22.1(2) The Chern forms are defined y eq. 22.10), and we shall use the expansion
(22.7) with eqgs. (22.8), yielding

i0
det([—l—%T) _1+§Tr9—4—ﬁ2Tr/\9—@Tr/\9+...,

and express these in terms of the polynomials given. The one needed for c3 is

3
T \O= > \dh,

i<j<k
where A are the eigenvalues of §. In terms of the same, Tré = ). \;, so
(Tro)* = () _N)° ZA3+3Z)\ XN A,
i i#] i#],j 7k k#i
of which the first term is OK, the second one we reexpress as
S = A -
i#j ij i
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and the third one,

DA =6 ) A,

i£5,j 7k k#i i<j<k

(Z/\i) ——2ZA3+SZA ZA2+6 > A,
% 1<j<k
3

=—2Tr6® +3Tr0Tr6” + 6 Tr \ 0,

SO

or, solved for /\3 0,
Tr/\@— [2Tr6* —3Tro Tro” + (Tr@)g} :

and now substituting the form 6, replacing powers with wedge products,

T/\H— —— R2Tr0AOAO—3TrOATIONO+TrOATrO ATr 0] .
87T3

Problem 22.2(1) Similarly to the case of SU(n) in Sec. 22.2¢, the special orthogonal group
consists of matrices

SO(n) = {O € R™"|det O = 1,070 = I},
and the isotropy subgroup of the point (1,0,...,0)” is the matrices

1 0 ,
(0 0')’ 0 €S0(n—1),

therefore S"~! = SO(n)/SO(n — 1), so SO(n) is a principal SO(n — 1) bundle over S"!. For
n = 1, SO(1) = {1}, which is connected. SO(2) is a circle, again, connected. From here,
induction follows.

Problem 22.2(2) We intend to whow that if M is connected, and not orientable, then F'M
is connected. Let p; o be two points in F'M, C a curve connecting 7(p;) and 7(ps). This curve
can be lifted, and its endpoint either has the same orientation as p, in the frame bundle, or the
opposite. If the opposite, compose the curve with a closed curve starting and ending at 7(p;)
along which an orientation is reversed.

Problem 22.2(3) SU(1) is a single point. All higher dimensional special unitary groups are
fiber bundles over S?"~!, which is simply connected for n > 1, with a fiber of SU(n — 1), so
thm. (22.23) provides the induction step.

Problem 22.3(1) Sard’s theorem (1.14) states that almost all values of f are regular values,
i.e., the derivative is onto. This is not possible, as the rank is maximum £, so the whole image
is “amost nowhere”.
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Problem 22.3(2) Let us consider the first line of eq. (22.26) first,

O—>Zk—>(]k3>Bk_1—>O.

The fist exactness is that ker 7 = 0 when embedding closed chains into all chains. This is trivial.
The second one, is that the kernel of 0 consists of closed chains, which is so by definition. The
third one is that the imaga of the mapping ¢ is Bj_1, again, by definition.

The second line of eq. (22.26) is

0— By = Z, — H, — 0,

in which case the first exactness means that B are mapped into Z, by the injection. This is
so by definition, Z; is the space of all closed chains, Z, are boundaries, ad equality means here
that the same simplexes are in two chains with the same coefficients. The second exactness
means that when Zj is mapped into Hy = Z;/ By, the kernel is By, which is so by definition of
a factor space. The third one again holds by the defintion of a factor space.

(i) In the compact case, one may work with simplicial compexes in stead of singular ones.
In this case, all spaces are finite dimensional, and ¢, = dim C}, is the dimension of the space of
closed chains, by, is the Betti number, and [, the dimension of the space of boundaries. In this
case, as Hy, = Zy,/ By, 80 b, = 2z — By, 80 ¢, — by = ¢x — 2z + Br. Pr_1 is the dimension of the
space of kK — 1 dimensional boundaries, that is ¢, — 2y, as ker = Zj, and dim Im 0+ dim ker 0 =
dim Ck = Cg, i.e., ﬁk:—l + zp = Ck.

(ii) For S™, we have by = b,, = 1 and the rest 0, so for n even, x(S*) = 2 and y(S?**1) = 0.
For the projective spaces RP", by = 1 and for n odd b, = 1, 0 otherwise, so x(RP?**!) =0
and x(RP?) = 1. This is in accord with the fact that the spere covers the projective space
twice. The homology groups of the Klein bottle K were discussed in sec. 13.3b, by =1, by = 1,
so x(K) = 0.

(iii) For a closed orientable manifold, Poincaré duality [see Problem 14.2(3)] leads to by =
buci, 50 X = 3o (— Db = S (=D = (~1)" S0 (—1)"Fb,y = (~1)"x, 50 if n is
odd, x = 0.

If the manifold is non-orientable, then there is a 2-sheeted orientable cover. The triangu-
lation can be lifted, so the numbers of edges, vertices, etc., are multiplied by the number of
sheets, therefore for a 2-sheeted cover, y(covering space) = 2y(covered space). If the former
vanishes, so does the latter.

Problem 22.3(3) (i) We shall show that the composition of all successive pairs of homomor-
phisms is trivial.

e To H,(A): any class in H,;(M;A) is of the form ¢, + Om,+1 + a,, and so its boundary
is dc, + Oa, = O(c, + a,). A form that is the result of the inclusion of H,(M), i.e., one
that has no boundary, so dc, = 0, yielding a boundary (i.e., trivial class) da, in H,(A).

e To H,(M): any boundary in H,(A) is also a boundary in H,(M).
e To H,(M;A): anything that is a class on A is by definition trivial in H,(M; A).
(ii) We shall show that there is not more in the kernels.

e In H,(A): the kernel of J is all of chains on A. If a chain Z closes on A, it also closes on
M, and anything in H, ;4 homologous to it is of the form 2’ = 2z + Om + a, for which
to close on A, a = da’ must hold. In this case, it is clearly in H,(M) as well.
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e In H,(M): any chain that vanishes in H,(M) is a boundary, i.e., it closes on M. The
image of 0 in H,(A) are chains on A that only close in M but not on A, so these agree.

e In H,(M;A), the kernel of the mapping from H,(M) are classes that differ from a bound-
ary by fomething on A. That is the image of the inclusion of H,(A) in H,(M).

(iii) The homology classes of S™ are Hy(S™) = G = H,(S™), and the rest vanishes. For the
ball, Hy(B™) = G, and all others vanish. Using the exact sequence in the case - - - — H,(B") —
H,(B",S") = H, 1(S") — H,_1(B"™) we see that 0 — H,(B",S") — H,_1(S") — 0 is exact,
so as in sec. 22.3c, due to 0 being in the first position, the second arrow is 1:1, so H,(B", S™) =0,
p #n, and H,(B",S™) = G. The generator of H,(B,5) is the ball itself.

Problem 22.4(1) We wish to show that m3SU(n) = m3SU(2) = Z for n > 2. We use the
fibering SU(n — 1) — SU(n) — S?"~! to obtain

o= ST o mSU(n — 1) — mSU(n) — me S ! 2 mSU(n—1) — ... .

In the cse of n = 2 we know that 73SU(2) = Z. For n > 2, m35%"~! = 0, so we have the exact
sequence as part of the above one,

0 — m3SU(n — 1) = m3SU(n) — 0,

which provides the induction step.

Problem 22.4(2) The symmetric space relation yields the fibration SO(n — 1) — SO(n) —
Sl 5o the exact homotopy sequence from thm. (22.27) is

’/TQSnil — WlsO(n — 1) — 71'180(71) — 71'15”71 — 1.

For n = 3, the result is known. For n > 3, mS™ ! = 1, and also mS"! = 1, so we have the
exact sequence
1 - mSO(n —1) - mSO(n) — 1,

which shows that the two groups above are isomorphic.
Problem 22.4(3) The exact sequence in this case is
—>7Tk(F) —)ﬂ'kM—)ﬂ'kM—)ﬂ'k_lF—)...

"'—>7TQF—>7T2M—>7T2M—>7T1F—>7TlM—>7T1M,

and the fiber F' is a discrete set of points. The homotopy group of the discrete set of points is
trivial, so the sequence breaks up into

0— meM — 1M — 0,
for k > 0, which shows that 7, : m,M — 7, M is an isomorphism, and the last one,
1— 7T1M — 7TlM,

which shows that 7, : m M — m M is 1:1.
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Problem 22.5(1) We proceed as in sec. 22.5b. We take a triangulation of M", in such a way
that all simplexes lie in a local trivialisation patch, i.e., over any simplex A, ToM ~ A x S"~1,
We need to construct a unit vector field. Over each simplex A, this is equivalent to a mapping
fa: A= Ax S o — (x,9(x)).

To define the section over each 0-simplex (vertex), we arbitrarily choose a point.

To define the section over 1-simplexes, we have two values at the endpoints, and as S" ! is
path-connected, there exists a curve connecting the endpoints.

To define the section over 2-simplexes As, we need to extend a mapping on the boundary,
0A,, consisting of 1-simplexes, to the interior of A,. This is possible according to the extension
theorem (22.17) if the mapping of the boundary, A, — S™~! is homotopic to a point, which
is always so if n > 3.

To define the section over k-simplexes, one similarly needs to extend a mapping from 0Ay
to Ay, again, possible of the mapping is homotopic to a point, which is always so if £ < n, as in
that case the image of A}, is always homotopic to a point in S"~!. We see that the obstruction
arises at the level k = n.

At the level k = n, we see that the vector field can be extended everywhere with the possible
exception of discrete points, by cutting out balls around the baricentres of the k-simplexes.

If a vector field exists that has no singularities, then the sum of the indices must vanish. On
the other hand, the sum of indices is independent of the vector field. Accoding Hopf’s theorem,
the sum of indices is the Euler characteristic.

Problem 22.5(2) We proceed by extending a section from triangulations. The unit normal
bundle is an S? bundle over V. The section is build up on a skeleton, by choosing arbitrarily on
O-simplexes of a triangulation of V', extending to 1-simplexes and then to two-simplexes. That
these are possible depends on the path-connectedness of the fiber and on its first homotopy
group, as for a two-simplex A,, the mapping A, — S? must be homotopic to a point in order
that the extension exists. As m;5% = 1, this always holds.

If the surface V is embedded in M*, the unit normal bundle is an S'-bundle. In this case
the extension is possible with the exception of a finite set of points, and the indices must add
up to 0. This is the same scenario as in the previous problem, and in this case, the Fuler
characteristic can be expressed with the integral of the first Chern form ¢; = i6/(27) over V.

TODO/NOTES

e Problem 2.8(2): probably not the solution Frankel thought of.

e Problem 11.2(2): I think what is needed here is not only the torsionlessness of the connec-
tion, eq. (9.17) but the definition (8.32) of Christoffel symbols. The covariant derivative of
the metric only vanishes if the connection is metric compatible (Levi-Civita connection).

e In Problem 17.2(2), C'U C’ is not a subgroup, but it generates one, and that is one we
factorise with.

e In Problem 20.1(3), in Clairaut’s relation, I have replaced y by f(z), for clarity. If we
used z,y, z coordinates in 3-space, and considered the points of the surface of revolution
in thes, the original form wouldn’t be correct.

71



e In Problem 20.3(1): usually, in convex combinations, only positive a is allowed. This here
is an affine combination.

e In problem 20.5(1), a factor of —ig is missing in the book in the formula expressing B?
with Al. Also, a —igedt term is missing from the commutator in V x F.

e In Problem 21.3(5), there is a typo. The maximal L is —(n —1)/h = (n —1)/|hl.
References

[1] Theodore Frankel, “The geometry of physics: An introduction” (Cambridge University
Press, Cambridge, UK, 1997).

72



	Manifolds, tensors, and exterior forms
	Manifolds and vector fields
	Tensors and exterior forms
	Integration of differential forms
	The Lie derivative
	The Poincaré lemma and potentials
	Holonomic and non-holonomic contraints

	Geometry and topology
	R3 and Minkowski space
	The geometry of surfaces in R3
	Covariant differentiation and curvature
	Geodesics
	Relativity, tensors, and curvature
	Curvature and topology: Synge's theorem
	Betti numbers and De Rham's theorem
	Harmonic forms

	Lie groups, bundles, and Chern forms
	Lie groups
	Vector bundles in geometry and physics
	Fiber bundles, Gauss-Bonnet, and topological quantisation
	Connections and associated bundles
	The Dirac equation
	Yang-Mills fields
	Betti numbers and covering spaces
	Chern forms and homotopy groups


