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Abstract

In most �eld theory textbooks, variational principles are explained �rst for real scalar �elds,

and then the reader is told, that for complex �elds, one shall either work with real and imaginary

parts separately, or follow the same procedure, treating the complex �elds and their components

independently. In this short note, we would like to spell out the mathematics behind �treating

a complex �eld component and its conjugate independently�, to alleviate the confusion caused in

some mathematically minded students.

Introduction In most �eld theory textbooks (e.g., see Ref. [1]), the variational principle governing
a real scalar �eld is spelled out in detail (including the variational procedure for deriving the �eld
equations from the Lagrangian). However, for complex �elds, the reader is told, that one should either
work with the real and imaginary parts of the �elds separately, or, consider the �eld and its conjugate
independent, and vary both. This might give the reader a feeling of insecurity. The question arises
naturally: 'How would it be possible to treat a complex �eld ϕ and its conjugate, ϕ∗ as independent?
If I know one of them, I know both!' ([2]). One refreshing exception is Morse and Feshbach's famous
monograph [2], where this question is addressed, and the reader is told, that knowing the relation
between a complex number z and its conjugate, z∗ is equivalent to knowing where the real (x) axis
lies. However, at least us, this did not completely alleviate the feeling of insecurity

In the present paper, we would like to spell out explicitly the meaning of treating z and z∗ indepen-
dently. The outline of the paper is as follows: in Section 1 we introduce the necessary mathematical
background, Wirtinger or CR calculus. In Section 2 we apply the results of the preceding section to
the variational principles of a complex scalar �eld, and obtain the well known results.

This set of notes is a more detailed expansion of the ideas of in the unpublished notes [3].

1 Wirtinger calculus

A complex number, z = x+ iy (x, y real) di�ers from a pair of real numbers only in the fact, that for
complex numbers, an product is introduced, z1z2 = (x1+iy1)(x2+iy2) := x1x2−y1y2+i(x1y2+x2y1). In
complex function is merely a function mapping pairs of real numbers to pairs of real numbers. For such
functions, a notion of di�erentiability at a point (x0, y0) is straightforward, it demands the existence
of a 2× 2 matrix f ′(x0, y0) such that

f(x, y) = f(x0, y0) + f ′(x0, y0) · (x− x0, y − y0)
T + h(x− x0, y − y0) , (1)

such that the remaining term, h is a �small o� function, i.e., it vanishes more rapidly than |x−x0, y−y0|.
Complex di�erentiability at a point z0 = x0 + iy0, in contrast, demands the existence of a complex
number f ′(z0) such that

f(z) = f(z0) + f ′(z)(z − z0) + h(z − z0) , (2)

where, again, h is a �small o� function. Let f ′(z) = u+iv, f ′(x0, y0) =

(
a b
c d

)
. Then f ′(x0, yo)(ξ, η) =

(aξ + bη, cξ + dη) (ξ = x− x0, η = y − y0) and f ′(z0)(ξ + iη) = uξ − vη + i(uη + vξ). Comparing the
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two yields the famous Cauchy�Riemann relations

∂f1
∂x

=
∂f2
∂y

,
∂f1
∂y

= −∂f2
∂x

, (3)

where f = f1+if2. Equations (3) simply state the fact, that the derivative matrix the function f(x, y) =
(f1, f2) can be represented by a complex number; complex di�erentiability is real di�erentiability plus
the Cauchy�Riemann relations. Note also, that from the above calculations,

f ′ =
1

2

(
∂f

∂x
− i

∂f

∂y

)
. (4)

This motivates the introduction of the following operators,

∂z = ∂ =
∂x − i∂y

2
, ∂z∗ = ∂∗ =

∂x + i∂y
2

, (5)

which act on all complex valued functions, that are at least di�erentiable in the real sense, as in eq.
(1). These are obviously di�erential operators, i.e., they are linear, and follow the Leibniz rule. It is
easy to verify, that on any polynomial in z and z∗, they act just like if z and z∗ were independent

variables,
∂zn(z∗)m = nzn−1(z∗)m , ∂∗zn(z∗)m = mzn(z∗)m−1 . (6)

Also, for a real di�erentiable function f ,

f(z) = f(z0) + ∂zf(z0)(z − z0) + ∂z∗f(z0)(z − z0) + h(z − z0) , (7)

i.e. a Taylor expansion also looks like if z and z∗ were independent variables (for higher orders, use
induction). In Section 2, we shall see that using the expansion (7) in the variational problem is what
is meant by varying ϕ and ϕ∗ separately.

Note also, that the Cauchy�Riemann relations can be recast as ∂∗f = 0, i.e. �a function is complex
di�erentiable if it does not depend on the conjugate variable�. A real function of a complex variable,
by the Cauchy�Riemann relations, can be complex di�erentiable only if it is constant. Also, for f real,

∂∗f = (∂f)∗ . (8)

In most usual treatments of complex function theory, the operators ∂ and ∂∗ are not introduced.
An exception is Ref. [4]. In multi-variate complex analysis, they are essential tools [5]. For Wirtinger's
original paper introducing ∂ and ∂∗, see Ref. [6].

2 The variational principle of a complex scalar �eld

Let us now consider the following variational problem:

δS = 0 , S =

∫ t2

t1

dt

∫
ddxL(ϕ, ϕ̇, ∂iϕ) , (9)

where ϕ is a complex �eld, x = (x1, . . . , xd) are space coordinates, ∂i = ∂/∂xi, t denotes the time, the
dot denotes ∂/∂t, and L is the Lagrangian, a real function of its (complex) arguments. By a quick
look at the Cauchy�Riemann relations, eq. (3), it becomes obvious, that a real function of complex
arguments can be only real di�erentiable, and never complex di�erentiable, unless it is a constant.

Let us now use the expansion (7) in eq. (9), applied in the variables ϕ, ϕ̇ and ∂iϕ. In xi, let us also
use the Gauss theorem, and in t partial integration, as in the usual derivation of �eld equations from
a variational principle (see e.g., [2, 7]). This way, we get two terms,

δS =

∫ t2

t1

dt

∫
ddx

(
δS

δϕ
δϕ+

δS

δϕ∗ δϕ
∗
)

, (10)
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where
δS

δϕ
=

∂L
∂ϕ

− ∂i
∂L
∂∂iϕ

− ∂

∂t

∂L
∂ϕ̇

,

δS

δϕ∗ =
∂L
∂ϕ∗ − ∂i

∂L
∂∂iϕ∗ − ∂

∂t

∂L
∂ϕ̇∗

,

(11)

where the derivatives w.r.t. ϕ, ϕ∗, etc., are de�ned in the Wirtinger sense, as in eq. (5). Obviously, for
δS = 0, both

δS

δϕ
= 0 ,

δS

δϕ∗ = 0 (12)

have to hold. As L is a real function, the two are merely complex conjugates of each other.

3 Conclusions

In the above paper, we have spelled out explicitly, what �considering ϕ and ϕ∗ independent� means,
when discussing the variational principle of complex �elds. While the results are obviously not new,
we think that the explicit reference to Wirtinger calculus might make understanding easier for a
mathematically minded student, or at least it made it more clear to the author.
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