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1 Introduction

In this note we shall be concerned with the basics of classical �eld theory. The starting point will
be to extend Par. 32 of Ref. [1] to include the spin tensor, conservation of angular-momentum
and the Belinfante-Rosenfeld procedure, following Ref. [2]. For Dirac matrix notations, we
follow Ref. [3, 4]

We shall assume that the �elds ϕa (this may include components of vectors, covectors,
tensors, spinors, etc.) satisfy �eld equations stemming from the principle of least action, with
an action as the integral of the Lagrangian,

S =

∫
ddxL ,L = L(∂µϕa, ϕa) , (1)

and in what follows, exploit the symmetries of the action.
The �eld equations are derived using the usual procedure, of demanding that the functional

derivative of the action S vanish. The latter is obtained by adding a small variation to the
�elds, δϕa, and calculating the linear contribution to S, δS, performing partial integration, and
dropping boundary terms, yielding

∂µ
∂L

∂∂µϕa

=
∂L
∂ϕa

. (2)

Eq. (2) holds for all a.
Note about notation: we shall use the conventions of Ref. [1], with the role of Greek and

Latin indices reversed. The metric is diag(+,−,−,−) and Greek indices run from 0 to d − 1.
The index a in Eq. (2) runs over all �eld components, but we shall also use latin indices running
over 1, . . . , d− 1 (spatial dimensions).

Another useful notation that is usually omitted in Eq. (2) is the overline. Here, it denotes
taking the composition of the function with a solution of the �eld equations, e.g.,

L = L(∂µϕa, ϕa) , (3)

which, in a modern mathematical notation would be L = L ◦ (Dϕ, ϕ), and for Eq. (2),

D[D1L ◦ (Dϕ, ϕ)] = D2L ◦ (Dϕ, ϕ) . (4)
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2 Internal symmetries

Let us �rst demonstrate how internal symmetries yield conservation laws. Internal symmetries
are symmetries that transform the �eld ϕa in such a way, that the new �eld values only depend
on the old ones at the same point.

We shall demonstrate here, how to each one-parameter subgroup of the internal symmetries
of the theory corresponds a conserved current. An element of a one parameter subgroup,
corresponding to a small parameter ϵ transforms the �elds as

δϕa = ϵMa
bϕb , (5)

and what we shall do is assume that the Lagrangian is invariant under the transformation. Let
us now take the derivative,

0 = ∂ϵL =Ma
b

[
∂L

∂∂λϕa

∂λϕb +
∂L
∂ϕa

ϕb

]
=Ma

b∂λ

[
∂L

∂∂λϕa

ϕb

]
= ∂λJ

λ , (6)

where we have used the �eld equations (2) in the last step;

Jµ =Ma
b ∂L
∂∂λϕa

ϕb . (7)

Conservation of the current: consider the integral

Q =

∫
d3xQ0 , Q̇ =

∫
d2xQ̇0 = −

∫
d3x∂iJ

i = 0 , (8)

which is seen by using Gauss' theorem to turn the last integral into a surface integral over a
large sphere, and assuming that the �elds vanish far away.

3 Canonical energy momentum tensor

The canonical energy-momentum tensor is derived from the fact that the Lagrangian does not
depend explicitly on the position. This means, that of course, L does depend on time, but L
itself not, i.e., it is a two-variable function (one variable is to be replaced by ∂µϕa and one by
ϕa), i.e., L = L(∂µϕa, ϕa) and not L(∂µϕa, ϕa, x). Therefore, we may calculate the derivative of
L as follows,

∂µL =
∂L

∂∂λϕa

∂µ∂λϕa +
∂L
∂ϕa

∂µϕa = ∂λ

[
∂L

∂∂λϕa

∂µϕa

]
, (9)

or, brought on one side,

0 = ∂λ

[
∂L

∂∂λϕa

∂µϕa − δλµL
]
= ∂λΘ

λ
µ , (10)

where the latter is the canonical stress-energy (or energy-momentum) tensor,

Θµ
ν =

∂L
∂∂µϕa

∂νϕa − δµνL . (11)

The interpretation of Θµ
ν is that there are a set of conserved quantities,

Pµ =

∫
d3xΘ0

µ , (12)

which are interpreted as energy and momentum. The conservation is shown the same way as
for the charge, see eq. (8) in sec. 2.
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4 Angular momentum and spin

We shall consider angular momentum, or more generally, the conserved quantities corresponding
to Lorentz invariance of the action. Angular momentum is the part of the result corresponding
to rotations.

To proceed we must �rst consider the change of �elds upon applying a Lorentz transforma-
tion. First, scalars, vectors, tensors, etc..

What is a Lorentz transformation? A transformation of Minkowski space that preserves the
scalar product, i.e.,

xµ′ = Λµ
νx

ν , xµ1
′x′2,µ = xµ1x2,µ , (13)

or, introducing the metric, g = diag(+,−,−,−), a transformation such that

gµνΛ
µ
σΛ

ν
ρ = gσρ . (14)

Consider now an �in�nitesimal� Lorentz transformation, i.e., one for which

Λµ
ν = δµν + ωµ

ν + . . . , (15)

and expand the condition (14), yielding

ωµν + ωνµ = 0 , (16)

i.e., �in�nitesimal� Lorentz transformations are obtained by raising one index of an antisym-
metric matrix.

On some indexed quantities, Lorentz transformations are represented, i.e., they may act
linearly,

v′a = Da
b(Λ)vb , (17)

and, for in�nitesimal transformations, this may again be expanded,

δva = ωµνD
µν

a
bvb , (18)

where the D may be chosen such that it is antisymmetric in the indices µ and ν.
Of course, for scalars Dµν = 0.
Let us determine this matrix for a vector! We already know how a vector transforms, just

need to factor ωµν :

δvα = ωα
βv

β = gαµωµνδ
ν
βv

β = ωµν
1

2

(
gµαδνβ − gναδ

µ
β

)
vβ , (19)

and we may conclude that

Dµνα
β =

1

2

(
gµαδνβ − gναδ

µ
β

)
, (20)

which is also termed the de�ning representation of the Lorentz group.
For Dirac spinors,

Dµν
D ψ = − i

4
σµνψ , (21)

where σµν = (i/2)[γµ, γν ] = (i/2)(γµγν − γνγµ), and [, ] denotes the commutator, {, } the
anticommutator, and γµ the Dirac matrices, i.e., four 4×4matrices that satisfy {γµ, γν} = 2gµν .
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For the adjoint Dirac spinor, ψ̄ = ψ†γ0, using the usual normalisation of the Dirac matrices,
γµ† = γ0γµγ0, we obtain

Dµν
aDψ̄ =

i

4
ψ̄σµν . (22)

The transformation of �elds is calculated from their tensorial character and space-time
dependece,

ϕa(x
′)′ = Da

b(Λ)ϕb(x) , (23)

which may be linearised to yield

δϕa = ωµν

[
Dµν

a
bϕb −Dµνα

βx
β∂αϕa

]
. (24)

Let us now turn to deriving the quantities corresponding to Lorentz invariance of the action
(1). Lorentz invariance is manifested by the fact, that the Lagrangian is a scalar,

δL = −ωµνD
µνα

βx
β∂αL . (25)

On the other hand, we may use the chain rule, yielding

δL =
∂L

∂∂λϕa

δ∂λϕa +
∂L
∂ϕa

δϕa

= ωµν

[
∂L

∂∂λϕa

(
Dµν

a
b∂λϕb −Dµνα

βx
β∂α∂λϕa +Dµν

λ
β∂βϕa

)
+
∂L
∂ϕa

(
Dµν

a
bϕb −Dµνα

βx
β∂αϕa

)]
= ωµν

[
−Dµνα

βx
β∂λ

(
∂L

∂∂λϕa

∂αϕa

)
+Dµν

a
b∂λ

(
∂L

∂∂λϕa

ϕb

)]
.

(26)

Let us now take the di�erence of eqs. (25) and (26), yielding

0 = ωµν

[
−Dµνα

βx
β∂λ

(
∂L

∂∂λϕa

∂αϕa − δλαL
)
+Dµν

α
β ∂L
∂∂αϕa

∂βϕa +Dµν
a
b∂λ

(
∂L

∂∂λϕa

ϕb

)]
,

= ωµν

[
1

2
Dµν

αβ

(
xα∂λΘ

λβ − xβΘλα +Θαβ −Θβα
)
+Dµν

a
b∂λ

(
∂L

∂∂λϕa

ϕb

)]
= ωµν

1

2
∂λ

(
Mλµν

o + Sλµν
)
,

(27)
where we noticed, that the �rst expression in round brackets is the canonical stress-energy tensor
Θλ

α! Next, we have raised and lowered indices to factorise theD
µν

αβ, and antisymmetrised. The
resulting tensors Mo and S are the orbital angular momentum and spin tensors, respectively.
Here

Mλµν
o = Dµν

αβ

(
xαΘλβ − xβΘλα

)
= xµΘλν − xνΘλµ , (28)

which is interpreted as orbital angular momentum density, as from eq. (11), Θ0µ is interpreted
as momentum density, and therefore xµΘ0ν − xνΘ0µ is orbital angular momentum. The other
term in the angular momentum is spin,

Sλµν = 2Dµν
a
b ∂L
∂∂λϕa

ϕb . (29)
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For future reference, we note that Sλµν = −Sλνµ, and

∂λS
λµν = −∂λMλµν

o = − (Θµν −Θνµ) . (30)

We also introduce the notion of the total angular momentum density,

Mλµν =Mλµν
o + Sλµν , (31)

which is conserved, from eq. (27),
∂λM

λµν = 0 . (32)

5 Symmetrised stress-energy tensor

We now intend to construct the Belinfante-Rosenfeld symmetric stress-energy tensor, follow-
ing Ref. [2]. This tensor should satisfy the following criteria: (i) its integral should be the
momentum ∫

T 0µd3x = P µ =

∫
Θ0µd3x , (33)

(ii) it should be symmetric,
T µν = T νµ (34)

and (iii) it should be conserved,
∂µT

µν = 0 . (35)

We can ful�ll the �rst condition, eq. (33) if the Belinfante-Rosenfeld tensor di�ers from the
canonical stress-energy tensor by a four-divergence,

T µν = Θµν + ∂λψ
λµν . (36)

If eq. (36) holds, the integral of ∂ψ in eq. (33) is a surface term, which vanishes if the �elds
decay rapidly enough. Eq. (34) is satis�ed if

∂λ
(
ψλµν − ψλνµ

)
= − (Θµν −Θνµ) . (37)

Conservation of T µν , eq. (35), holds, as Θµν is conserved [see eq. (12)], if

∂µ∂λψ
λµν = 0 , (38)

which may be guaranteed if
ψλµν = −ψµλν . (39)

Let us notice, that eq. (37) is satis�ed if

ψλµν − ψλνµ = Sλµν , (40)

and this, together with antisymmetry in the �rst two indices, determines ψ uniquely,

ψλµν =
1

2

(
Sλµν − Sµλν + Sνµλ

)
. (41)

It is possible to introduce an angular momentum density using the symmetrised stress-energy
tensor T µν as

Mλµν
BR = xµT λν − xνT λµ . (42)

The di�erence between M0µν
BR and M0µν is ∂λ(x

µψλ0ν − xνψλ0µ), using the atisymmetry of ψ
in the �rst two indices, this is seen to be a surface term, therefore, the angular momentum
densities (42) and (31) yield the same integrated angular momentum, provided that the �elds
decay rapidly enough at large distances.
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6 Applications

6.1 Real scalar �eld

A real scalar �eld interacting with a source σ is described by the Klein-Gordon Lagrangian

LKG =
1

2
∂µϕ∂

µϕ− 1

2
m2

sϕ
2 − σϕ . (43)

The �eld equation is the Klein-Gordon equation,

∂µ∂
µϕ+m2

sϕ = −σ . (44)

In this case, the spin tensor vanishes, and the canonical energy-momentum tensor is symmetric,

T µ
KGν = Θµ

KGν = ∂µϕ∂νϕ− δµνLKG , (45)

and the spin tensor vanishes, Sλµν
rmKG = 0.

6.2 Complex scalar �eld

A complex scalar �eld may be considered simply two real ones with a global U(1) = SO(2)
symmetry, ϕ = ϕ1 + iϕ2, and therefore, its Lagrangian is also just the sum of the Lagrangians
of the two componets, which may be written as

Lcs = ∂µϕ
∗∂µϕ−m2

sϕ
∗ϕ− σϕ∗ − σ∗ϕ . (46)

Equations of motion are derived with the usual fashion, or, by using Wirtinger calculus, often
referred to as �treating ϕ and ϕ∗ as independent variables�, de�ning ∂/∂ϕ = (∂/∂ϕ1− i∂/∂ϕ2)/2
and ∂/∂ϕ∗ = (∂/∂ϕ1 + i∂/∂ϕ2)/2, and using these for variational calculus1, yielding

∂µ∂
µϕ−m2

sϕ = −σ , ∂µ∂
µϕ∗ −m2

sϕ
∗ = −σ∗ . (47)

Again, the canonical and the symmetrised stress-energy tensors agree,

Θµν
cs = T µν

cs = ∂µϕ∗∂νϕ+ ∂µϕ∂νϕ∗ − gµνLcs , (48)

which is also the sum of the stress-energy tensors of the components. The only novelty is the
conserved current corresponding to the symmetry ϕ → eiαϕ (α real), under an in�nitesimal
transformation α = ϵ, δϕ = iϵϕ, δϕ∗ = −iϵϕ∗, or, M .

. = i M∗
∗ = −i, yielding

jcsµ = i(ϕ∂µϕ
∗ − ϕ∗∂µϕ) . (49)

Let us also consider derivative coupling, we shall couple jcsµ to a vector �eld Aµ, with
the interaction Lagrangian −ejcsµAµ + 2e2ϕ∗ϕAµA

µ. This form corresponds to replacing the
partial derivatives in the current (49) with gauge covariant derivatives, and coupling that to Aµ

as −eAµj
µ
cs ∂→D, where we have introduced the gauge covariant derivative Dµϕ = (∂µ− ieAµ)ϕ.

1Note, that the condition for complex di�erentiability, the Cauchy-Riemann relations for a function f(z) may

be written as ∂f(x)/∂z∗ = 0, and, e.g., |z|2 = z∗z is not complex di�erentiable, but, of course, R2-di�erentiable,

∂(z∗z)/∂z∗ = z, ∂(z∗z)/∂z = z∗.
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In this case, there is an addition to Θµ
sc ν , ieA

µϕ∗∂νϕ+c.c., yielding an asymmetric canonical
energy-momentum tensor,

Θµ
cs,i ν = Dµϕ∗∂νϕ+Dµϕ∂νϕ

∗ − δµνLcs,i , (50)

where Lcs,i = Lcs − eAµj
µ
cs,i, and j

µ
cs,i = jµ∂→D.

Taking into account the modi�cation to ∂λψ
λµν in the case of the electromagnetic stress-

energy tensor, we obtain

T µν
cs,i = Dµϕ∗Dνϕ+DµϕDνϕ∗ − gµνLcs,i , (51)

and for the full system, we need to add T µν
em without the modi�cations due to the interaction.

The same result holds for interaction with massive electrodynamics (Proca �eld).

6.3 Electrodynamics

The Lagrangian of the Maxwell �eld is

Lem = −1

4
FµνF

µν − jµAµ , Fµν = ∂µAν − ∂νAµ , (52)

where jµ is a source vector �eld, which we shall assume to be conserved, ∂µj
µ = 0.

Field equations are Maxwell's equations,

∂µF
µν = jν , or ∂νF

µν = −jµ . (53)

The canonical stress-energy tensor is then for pure (source free) Maxwell �eld (jµ = 0)

Θµ
emν = −F µλ∂νAλ +

1

4
δµνFλρF

λρ . (54)

For the spin tensor one obtains

Sλµν
em = AµF λν − AνF λµ . (55)

The Belinfante-Rosenfeld tensor is thus from eq. (41)

ψλµν
em = AνF µλ , (56)

which, when added to the canonical tensor in eq. (54) yields

T µν = −F µλFνλ +
1

4
gµνFλρF

λρ , (57)

as ∂λψ
λµν = ∂λA

νF µλ, as ∂λF
µλ = 0 for source-free electromagnetic �elds. (Note the typo here

in Ref. [1].)
In the case when sources are included, δµν jλA

λ is added to Θµ
emν and −Aνjµ+gµνjλA

λ to T µν
em .

(Note, that our calculation was based on the assumption that the Lagrangian is translation-
independent, i.e., we are assuming here, that the sources also satisfy some �eld equations
originating from a translation-invariant Lagrangian.)

7



6.4 Proca �eld

Proca theory is massive electrodynamics, with the Lagrangian

LP = −1

4
FµνF

µν +
1

2
m2

AAµA
µ − jµAµ , Fµν = ∂µAν − ∂νAµ , (58)

where jµ is a source vector �eld, which we shall assume to be conserved, ∂µj
µ = 0.

The �eld equations are Maxwell's equations modi�ed by the mass term,

∂µF
µν +m2

AA
ν = jν , or ∂νF

µν −m2
AA

µ = −jµ . (59)

The canonical stress-energy tensor is then

Θµ
Pν = −F µλ∂νAλ +

1

4
δµνFλρF

λρ − 1

2
δµνm

2
AAλA

λ . (60)

The spin tensor is the same as in electrodynamics

Sλµν
P = AµF λν − AνF λµ , (61)

and, therefore, so is the Belinfante-Rosenfeld tensor,

ψλµν
em = AνF µλ , (62)

which, when added to the canonical tensor in eq. (60) yields

T µν = −F µλFνλ +m2
AA

µAν +
1

4
gµνFλρF

λρ − 1

2
gµνm2

AAλA
λ , (63)

as ∂λψ
λµν = ∂λA

νF µλ +m2
AA

νAµ, as ∂λF
µλ = m2

AA
λ for source-free electromagnetic �elds.

An interesting feature of the energy density of the Proca �eld is that the coe�cient of A2
0

in the canonical energy density Θ00 is negative, −m2
A/2. In the Belinfante-Rosenfeld energy

density, T 00 it is positive m2
A/2. Thus, de�niteness of energy (the integral) is proven, ad the

integral of the canonical and the symmetrised energy-momentum densities agree. This also
shows, that Belinfante-Rosenfeld symmetrisation is not simply algebraic symmetrisation.

In the case when sources are included, δµν jλA
λ is added to Θµ

Pν and −Aνjµ + gµνjλA
λ to

T µν
P . The remarks when considering interaction terms in Sec. 6.3 apply here as well.

6.5 Gauge kinetic mixing

Let us consider now a theory with two gauge �elds, Aµ
1 , A

µ
2 . A possible interaction is the gauge

kinetic mixing, proposed in Ref. [5],

LGKM =
sin ϵ

2
F1,µνF

µν
2 , (64)

where Fi are the �eld strenght tensors corresponding to Ai with the usual formulae. We shall
assume that the gauge �elds both appear in the Lagrangian as Aµ in Eq. (52).

The canonical stress-energy tensor, in addition to the separate contributions of the two
�elds receives a contribution

Θµ
GKM ν = sin ϵ(F µλ

1 ∂νA2,λ + F µλ
2 ∂νA1,λ)− δµνLGKM . (65)
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Similarly, the spin tensor receives the correction

Sλµν
GKM = − sin ϵ(Aµ

1F
λν
2 − Aν

1F
λµ
2 + (1↔ 2)) . (66)

and
ψλµν
GKM = − sin ϵ(Aν

1F
µλ
2 + Aν

2F
µλ
1 ) , (67)

and, �nally,
T µν
GKM = sin ϵ(F µλ

1 F ν
2,λ + F µλ

2 F ν
1,λ)− gµνLGKM . (68)

6.6 The Dirac �eld

The Dirac �eld satis�es �eld quations derived from the Lagrangian

LD = ψ̄(i
←→
/∂ −m)ψ , (69)

where /∂ = ∂µγ
µ, γµ are the Dirac matrices (in some representation), ψ̄ = ψ†γ0, and f

←→
∂µ g =

(1/2)(f ∂µg − ∂µf g). In what follows, we shall pay attention not to change ordering of Dirac
�elds, so that the results remain valid for ordinary spinors and anticommuting �elds.

The �eld equations corresponding to the Lagrangian (69) are, by varying independently
w.r.t. ψ and ψ†, using (γ0)2 = 1,

(i/∂ −m)ψ = 0 , ψ̄(−i
←−
/∂ −m) = 0 , (70)

where f
←−
∂ = ∂f .

The canonical stresss-energy tensor is

Θµ
Dν = iψ̄γµ

←→
∂ νψ − δµνLD . (71)

Note, that on shell, i.e., using the �eld equation (70), the Lagrangian vanishes.
The spin tensor is

Sλµν
D =

1

4
ψ̄
{
σµν , γλ

}
ψ = 2εσµνλψ̄γσγ

5ψ , (72)

where γ5 = iγ0γ1γ2γ3, and ϵµνλρ is the fully antisymmetric unit tensor, normalised as ϵ0123 = 1.
The spin tensor (72) yields the Belinfante-Rosenfeld tensor

ψλµν
D =

1

2
Sλµν
D (73)

for the Dirac �eld, which can be shown, e.g., by using the properties of the ε tensor.
The calculate the divergence of the Belinfante-Rosenfeld tensor, we write out the anti-

commutator, and use the commutator[
σµν , γλ

]
= 2i

(
gλνγµ − gλµγν

)
in all terms where the ∂λ derivative is not next to γ

λ, and the Dirac and adjoint Dirac equations
(70), to cancel thos terms, remaining

∂λψ
λµν
D =

i

4
(−∂µψ̄γνψ + ∂νψ̄γµψ + ψ̄γν∂µψ − ψ̄γµ∂νψ) ,

9



adding which to the canonical stress-energy tensor (71) yields

T µν
D =

i

2

(
ψ̄γµ
←→
∂ νψ + ψ̄γν

←→
∂ µψ

)
. (74)

It is also possible to couple the Dirac �eld to the electromagnetic �eld via minimal cou-
pling, replacing ∂µ by Dµ = ∂µ − ieAµ in the Dirac Lagangian (69). Firstly, this couples the
electromagnetic �eld to the Dirac current,

jµD = −eψ̄γµψ , (75)

which is also the Noether current corresponding to the U(1) symmetry of the Lagrangian (69)
w.r.t. the transformation ψ → exp(ieα)ψ, ψ̄ → exp(−ieα)ψ̄. The interaction Lagrangian is
then Lint = −jµDAµ.

Due to the fact, that no derivative of the Dirac �eld is coupled to the electromagnetic
potential, the canonical stress-energy tensor (71) is unchanged upon adding the coupling. From
the ∂λψ

λµν term, a new contribution arises,

T µν
D,int =

1

2
AνjµD −

1

2
AµjνD ,

which, together with the correction to the same term in the electromagnetic case, −Aνjµ, yieds
a symmetric contribution, −(1/2)(AµjνD + jµDA

ν). The sum agrees with T µν
em + T µν

D,∂→D, i.e.,
replacing derivatives with covariant derivatives in the symmetric Dirac stress-energy tensor

(and using
←→
/D = (

←→
∂ µ − ieAµ)γ

µ).
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