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1 Using statistics

2 Describing data

2.1 The mean and the standard deviation of the data set is 19.26 and the standard deviation
is 0.49.

2.2 With the lecturer included, the mean is 19.95 and the standard deviation is 3.44.

2.3 The skew in the two cases is 0.23 and 4.65, respectively.

2.4 The average marks in classical and quantum mechanics are 37.5 and 55.25, and the
standard deviations are 25.9 and 14.2, respecitvely. The covariance matrix is

cov =

(
671.42 207.46
207.46 200.69

)
and the correlation coe�cient of the two variables is ρ = 0.565.

2.5 The expansion of the curtosis is

γ =
1

σ3
(x− x̄)3 =

1

σ3
x3 − 3x2x̄+ 3xx̄2 − x̄3

=
1

σ3
(x3 − 3x̄x2 + 2x̄3) ,

where we have used the fact that the mean of a constant (such as the mean of some data) is
the constant itself. The last line is eq. (2.14).

Similarly,

c =
1

σ4
(x− x̄)4 − 3 =

1

σ4
x4 − 4x3x̄+ 6x2x̄2 − 4xx̄3 + x̄4

=
1

σ4
(x4 − 4x̄x3 + 6x2x̄2 − 3x̄4) .
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2.6 A histogram with uniform bins is
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2.7 The mean, median, and mode of the data in ex. 2.6 are 61.59, 63.5, and 79, respectively.
The corresponding quantities from the histogram shown in soln. 2.6 are 61.75, 60-69, and 60-69.

2.8 The standard deviation of the data in ex. 2.6 is 16.67. The full width at half maximum
is 40, which agrees with eq. (2.12), 2.25 stddev is 39.18.

2.9 One may form vectors of the data points of each variable, x⃗i containing the data points
of variable x(i) − x̄(i). With this notation, the elemets of the covariance matrix are

covi,j =
1

N
x⃗i · x⃗j ,

and σ2
i = x⃗i · x⃗i/N . According to the Cauchy-Schwarz inequality, |covi,j| ≤ √

σiσj, which
completes the proof, as

ρi,j =
covi,j
σiσj

.

3 Theoretical distributions

3.1 Intercepting all 100 rockets has a probability of (0.995)100 = 0.606, i.e., 60.6% chance.
To have 50% chance, we have to take the logarithm, n log 0.995 = log 0.5, yielding n = 138.2,
i.e., launching 139 rockets makes a better than even chance of hitting the target.

3.2 To get a better than evens chance of two rockets penetrating the defences, we have to
solve

p0 + p1 < 1/2

where pk =
(
n
k

)
pkqn−k where p = 0.005 is the chance of hitting the target with a simple missile,

and q = 1− p, i.e.,
qn + nqn−1p < 1/2,

Numerical solution yields n > 335.33, i.e., 336 rockets have to be launched to have a better
than even chance of two not being intercepted.
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3.3 The distribution is Poisson, with an expectation value of λ = 15.7 × 0.5 = 7.85. The
probability of observing less than 5 meteors is p0 + p1 + · · ·+ p4 = 0.1085.

3.4 The Gaussian approximation to a Poission distribution with expectation value λ is a
normal distribution with expectation value and variance both λ.

Just approximating the Poisson distribution with a Gaussian, and calculating p0+ · · ·+p4 ≈
0.113. Replacing the sum with the integral of the Gaussian from −∞ to 4 yields 0.085 or 8.5%.
Table 2 can be used by realising that 4 means a deviation of −1.37σ from the expectation value,
and using the symmetry of the Gaussian.

3.5 The probability of still waiting after 60 cars is (0.99)60 = 0.547. As one car yields a
1% chance of a lift, the expected number of drivers willing to give a lift is 0.6 per hour. The
probability of no such drivers arriving in an our is, using p0 = e−λ (Poisson distribution) is
0.549.

3.6

(a) 21.87%,

(b) 0.75%,

(c) 13.79%,

(d) 67.36%,

(e) 48.35%,

(f) 91.53%,

(g) 0.77,

(h) 2.33.

3.7 The skew of a Gaussian is

γ =
1

σ3

∫ ∞

−∞

1√
2πσ

(x− µ)3e−
(x−µ)2

2σ2 dx =
1√
2πσ4

∫ ∞

−∞
x′3e−

x′2
2σ2 dx′ = 0 ,

as x3 is odd, and the bell curve is even.
The curtosis is (after shifting the variable by µ)

c = −3 +
1√
2πσ5

∫ ∞

−∞
x4e−

x2

2σ2 dx = 0 ,

as, according to table 3.1, the integral is (using n = 2, a = 1/2/σ2, even power), 3
√
2πσ5.

4 Errors

4.1 A set of 10 measurements with a resolution of 1mm has a resolution of 1/
√
10mm ≈

0.31mm, therefore, a single measurement with a resolution of 0.2mm is preferable.
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4.2 The best combined measurement is weighed by the inverse squared errors, and yields
299793105± 2910m s−1.

4.3 Similarly to the previous exercise, 299783690± 1319m s−1.

4.4 The voltage is determined as V = R · I, where R = 1400 ± 30Ω and I = 1120 ±
10mA, then the voltage is V = 1568V and its error is determined by eq. (4.15) as σV =
V
√

(σR/R)2 + (σI/I)2 = 36V.

4.5 Again, using Ohm's law, and the Example on p. 66, I = 50± 1mA.

4.6 For θ = 0.56±0.01, we have sin θ = 0.53±0.008, cos θ = 0.847±0.005, tan θ = 0.63±0.01.
For θ = 1.56± 0.01 we have sin θ = 1∓ 10−4, cos θ = 0.011± 0.01 and tan θ = 93± 86. Note

that in the last two cases, the errrors are so large, that the assumption of small errors breaks
down, and the errors cannot be trusted, as they are calculated from a linearised assumption.
Also, calculating the di�erences, e.g., | cos(θ + σθ) − cos(θ − σθ)| would not make sense, as
here one cannot assume that the distribution of cos θ is still normal (the latter would work for
tolerances, i.e., strict bounds for θ).

4.7 The variance of the weighted average of eq. (4.6) is obtained as

⟨(x̄− µ)2⟩ =

〈(∑
i xi/σ

2
i∑

i 1/σ
2
i

− µ

)2
〉

=

〈(∑
i xi/σ

2
i∑

i 1/σ
2
i

−
∑

i µ/σ
2
i∑

i 1/σ
2
i

)2
〉

=

〈∑
i(xi − µ)2/σ4

i

(
∑

i 1/σ
2
i )

2
+

∑
i

∑
j ̸=i(xi − µ)(xj − µ)/σ2

i /σ
2
j

(
∑

i 1/σ
2
i )

2

〉

=

〈∑
i(xi − µ)2/σ4

i

(
∑

i 1/σ
2
i )

2

〉
=

1∑
i 1/σ

2
i

,

where we have used the fact that the xi's are uncorrelated, ⟨(xi − µ)(xj − µ)⟩ = 0 for i ̸= j.

4.8 As we do not have separate error estimates for the two measurements (they come from
the same source), the best is to average, yielding 406.

4.9 The result depends entirely on what kind of errors these are. If they are measurements
based on di�erent duration, detector e�cientcy, etc., then they need to be weighted according
to their number of counts (Poisson distribution), if the errors are due to errors of calibration
of di�erent detectors, according to their errors. No general answer.

4.10 In this case, not just the resistance is the same for the two current measurements, but
the systematic error in the voltage measurements, i.e., we have Vi = V ′

i +V ′′ the formar having
variance σV , the latter having SV . Then Ii = Vi/Ri = Vi/R+V ′′/R, and so the transformation
matrix is

G =

(
∂Ii
∂Vj

,
∂Ii
∂V ′′ ,

∂Ii
R

)
=

(
1/R 0 1/R (V1 + V ′′)/R2

0 1/R 1/R (V2 + V ′′)/R2

)
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where (Vi + V ′′)/R = Ii, and the covariance matrix of the quantities V ′
1 , V

′
2 , V

′′, R is

V1 =


σ2
V1

0 0 0
0 σ2

V2
0 0

0 0 S2
V 0

0 0 0 S2
R


so the covariance matrix of the measurement results is

V2 = GV1Ṽ1

and so the error matrix of I1, I2 is

V2 =
1

R2

(
σ2
V1

+ S2
V − I21S

2
R S2

V + I1I2S
2
R

S2
V + I1I2S

2
R σ2

V2
+ S2

V − I22S
2
R

)
.

5 Estimation

5.1 If the experiment is repeated N times, then NS +NF = N , so the estimator is equivalent
to ρ̂ = NS/N , so the ⟨ρ̂⟩ = ⟨NS⟩/N = p, so the estimator is unbiased. Also, for large N , the
standard deviation of NS is

√
Np(1− p), so that of ρ̂ is

√
p(1− p)/N → 0, so the estimator

converges to the true value.

5.2 (a) The mean is 20.21. If the numbers represent measurements with a single quantity
with resolution 0.8, the error on the mean is 0.8/

√
(7) = 0.3.

(b) The estimate of the standard deviation assuming a known mean of 20.0 is 0.87.
(c) Estimating the standard deviation with no prior knowledge of the mean is 0.91.
(d) The error on the standard deviation estimated with no prior knowledge of the mean,

using eq. (5.24) is 0.26. Using that to estimate the error on the mean is 0.91/
√
7 = 0.34.

5.3 Let us consider the average

(x− x̄)3 = x3 − 3x2x̄+ 3xx̄2 − x̄3 = x3 − 3x2x̄+ 2x̄3 .

When calculating expectation values, we separate by the number of xi's that agree, e.g.,

⟨x3⟩ = ⟨x3⟩ ,

and

⟨x2x̄⟩ = 1

N2

[
N⟨x3⟩+N(N − 1)⟨x2⟩⟨x⟩

]
and similarly,

⟨x̄3⟩ = 1

N3

[
N⟨x3⟩+ 3N(N − 1)⟨x2⟩⟨x⟩+N(N − 1)(N − 2)⟨x⟩3

]
.

Putting these together yields

⟨(x− x̄)3⟩ = ⟨x3⟩
[
1− 3

N
+

2

N2

]
+ ⟨x2⟩⟨x⟩

[
−3(N − 1)

N
+

6(N − 1)

N2

]
+ ⟨x⟩32(N − 1)(N − 2)

N2

=
(N − 1)(N − 2)

N2
⟨x3⟩ − 3

(N − 1)(N − 2)

N2
⟨x2⟩⟨x⟩+ 2

(N − 1)(N − 2)

N2
⟨x⟩3 .
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Expanding the quantity to be estimated,

⟨(x− µ)3⟩ = ⟨x3⟩ − 3⟨x2⟩µ+ 2µ3 ,

and noting that ⟨x⟩ = µ yields the desired result that〈
N

(N − 1)(N − 2)

∑
i

(xi − x̄)3

〉
=

N2

(N − 1)(N − 2)
⟨(x− x̄)3⟩ = ⟨(x− µ)3⟩ .

5.4 We know that the expectation value is

⟨V̂ (x)⟩ = N − 1

N
(⟨x2⟩ − ⟨x⟩2) = N − 1

N
σ2 ,

which is calculated by expanding the bracket in V̂ (x) = (x− x̄)2 and separating each term into
ones having x2 or xixj, i ̸= j.

The error in the estimator is

V (V̂ (x)) = ⟨V̂ 2⟩ − ⟨V̂ ⟩2 ,

where we assume that N ≫ 1, and use eq. (5.17), to get

V (V̂ ) =
1

N

[
⟨(x− µ)4⟩ − ⟨(x− µ)2⟩2

]
,

and the second one in the brackets here is σ4, the �rst one, the σ4(c + 3) according to the
de�nition of the curtosis, eq. (2.15). Putting these together,

V (V̂ ) =
1

N

[
σ4(c+ 3)− σ4

]
=

σ4(c+ 2)

N
.

5.5 Assuming that both the sine and cosine measurements have equal error σ, and are ap-
proximately of a normal distribution, the likelihood function is

L = exp

(
−(sin θ − s)2

2σ2

)
exp

(
−(cos θ − c)2

2σ2

)
,

where s and c are the measured values of sin θ and cos θ, respectively. The maximum likelihood
condition gives

0 =
∂ logL

∂θ

∣∣∣∣
θ=θ̂

= −(sin θ̂ − s) cos θ̂ − (cos θ̂ − c) sin θ̂

σ2
=

s cos θ̂ − c sin θ̂

σ2

which yields

tan θ̂ =
s

c
, θ̂ = arctan

s

c
.
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5.6 The likelihood function is, as in the example on p. 82 of the book,

logL =
∑
i

(
−ti
τ

)
− log τ ,

yielding the ML estimate
τ̂ = t̄i .

To estimate the variance, one shall calculate

V (τ̂) = ⟨t̄2⟩ − ⟨t̄⟩2

using the exponential distribution. To do this, we note that

(t̄)2 =
1

N2

(∑
i

t2i +
∑
i

∑
j ̸=i

titj

)
,

therefore

⟨t̄2⟩ = 1

N
⟨t2⟩+ N − 1

N
⟨t⟩2

yielding

V (τ̂) =
1

N

(
⟨t2⟩+ N − 1

N
⟨t⟩2 − ⟨t⟩2

)
=

1

N

N − 1

N

(
⟨t2⟩ − ⟨t⟩2

)
=

1

N

N − 1

N
τ 2 ∼ τ 2

N
,

for N ≫ 1.
The same result can be obtained from the MVB, the second derivative of the log likelihood

function is
d2 logL

dτ 2
=
∑
i

(
−2ti
τ 3

)
+

1

τ 2
,

the expectation value of which is −N/τ 2, so for N → ∞

V (τ̂) ∼ 1

⟨−d2 logL/dτ⟩
=

τ 2

N
.

6 Least squares

6.1 The least squares �t, unsing eqs. (6.4, 6.5) is v = 10.1± 2mms−1. The resulting χ2 = 3,√
2χ2 = 2.46 and the number of DoF is 6,

√
2n = 3.2, which is OK.

6.2 Same �t as above, for 1/v, yielding v = 10.1±0.1mms−1, with χ2 = 10.6. The
√
2χ2 = 4.6

and
√
2DoF = 3.16.

6.3 In this case,
√

2/g can be obtained by �tting a linear function to t as a function of x. (a)
In this case, we obtain g 10.1 ± 0.09m s−1 with a χ2 = 23.76, which is too large. (b) Again,
�tting a linear function with non-zero intercept gives g = 9.87±0.32m s−1 with χ2 = 3.9, which
is reasonable for 3 degrees of freedom.
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6.4 The sum of squares to be minimised is

χ2 =
∑
i

(yi − axi − b sinxi)
2 ,

yielding the equations ∑
i

[
yixi − ax2

i − bxi sinxi

]
= 0 ,∑

i

[
yi sinxi − axi sinxi − b sin2 xi

]
= 0 ,

which can be written in the matrix form(
x2 x sinx

x sinx sin2 x

)(
a
b

)
=

(
xy

y sinx

)
which has the solution

a =
sin2 xxy − x sinx y sinx

x2 sin2 x− x sinx
2 , b =

x2 y sinx− x sinxxy

x2 sin2 x− x sinx
2 .

Evaluating these for the data yields a = 1.962 and b = 1.036.

6.5 The activity of a sample is described by

A(t) = A02
−t/τ ,

where τ is the half-life of the isotope. Therefore �tting a linear function y = mx + c to the
logarithms of the counts,

log ci = logA0 − ti log 2/τ

yields τ = − log2 /m, and one can assume that the counts have an error of δci =
√
ci, so

the errors on the log ci's are δ log ci = 1/c
3/2
i , which are used as weights. This yieds τ =

1.034± 0.007 hours.

7 Probability and con�dence

7.1 Make many tosses of the two coins, and register the frequencies. They converge to the
expected values, the probabilities, with the deviations ∼ 1/

√
N .

7.2 Apply Bayes's theorem, the following data are given, for the symptoms

P (acute lethargy|swamp fever) = 1 ,

P (spots|swamp fever = 1 ,

P (raging thirtst|swamp fever) = 0.6 ,

P (violent sneezes|swamp fever) = 0.2 ,
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for those having the illness, and

P (acute lethargy|no swamp fever) = 0.1 ,

P (spots|no swamp fever = 0.03 ,

P (raging thirtst|no swamp fever) = 0.02 ,

P (violent sneezes|no swamp fever) = 0.05 ,

for those not having it, and the probability of having the illness is

P (swamp fever) = 10−4 .

The symptoms are assumed to be independent of each other with the conditions. The aim is
to calculate P (swamp fever|all symptoms) and P (swamp fever|all symptoms except sneezing).
This is a case for Bayes' theorem,

P (swamp fever|all symptoms) =
P (all symptoms and swamp fever)

P (all symptoms)

and

P (all symptoms and swamp fever) = P (all symptoms|swamp fever)P (swamp fever)

and the symptoms are independent, so

P (all symptoms|swamp fever) =
∏

symptoms

P (symptom|swamp fever) ,

P (all symptoms|no swamp fever) =
∏

symptoms

P (symptom|no swamp fever)

and
P (all symptoms) =P (all symptoms|swamp fever)P (swamp fever)

+ P (all symptoms|no swamp fever)P (no swamp fever) .

These yield
P (all symptoms|swamp fever) = 0.6× 0.2 = 0.12 ,

P (all symptoms|no swamp fever) = 3 · 10−6 ,

P (all symptoms and swamp fever) = 1.2 · 10−5 ,

P (all symptoms) = 1.2 · 10−5 + 2.9997 · 10−6 = 1.5 · 10−5 ,

yielding
P (swamp fever|all symptoms) = 0.8 ,

and similarly for all symptoms except sneezing (a.s.e.s.),

P (a.s.e.s.|swamp fever) = 0.6× 0.8 = 0.48 ,

P (a.s.e.s.|no swamp fever) = 5.7 · 10−5 ,

P (a.s.e.s. and swamp fever) = 4.8 · 10−5 ,

P (a.s.e.s.) = 1.05 · 10−4 ,

so
P (swamp fever|a.s.e.s.) = 0.46 .
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7.3 Performing a number of trials with ns successes and nf failures with a ratio ns/nf is
equivalent to a binomially distributed variable with ratio r = ns/(ns+nf ). The limits on r are
P− and P+. The ratio ns/nf = r/(1 + r), which is a monotonous function of r, so the limits
are transformed using the same formula, into P−/(1− P−) and P+/(1− P+).

7.4 Numerically solving the equations of sec. 7.2.5 for a 95% con�dence level gives P− = 0.19
and P+ = 0.81. Approximating the distribution with a Gaussian, that has µ = np = 4 and
σ =

√
np(1− p) =

√
2, so the 1.64σ deviation corresponds to 1.64

√
2, and so for the ratio,

1.64
√
2/8 = 0.29, and thus the con�dence interval is 0.21 to 0.79.

7.5 The total number of protons in the sample is 6 · 1032. The expected number of decays
is log 2/τ times this number, and we wish to estimate τ , the half-life. The number of decays
obeys a Poisson statistic, so the con�dence limits for N± can be read o� from table 7.1, for a
95% con�dence (i.e., P (N− < N < N+) = 0.9) these are 3.29 and 13.15. The limits on the
lifetime are thus come from solving 6 · 1032 log 2/τ∓ = N±, yielding τ∓ = 6 · 1032 log 2/N± =
3.16 · 1031 years and 1.26 · 1032 years.

7.6 Both the background and the real events are Poisson-distributed, therefore, so is their
sum. The measured value for the number of events here is the di�erence, 4 events, with the
condidence interval 0.29 to 9.15 (subtracting the background from the limits in excercise 7.5).
The resulting half-life limits are 4.10 · 1031 years and 1.43 · 1033 years.

7.7 In this case, one needs to take into account that the variable is constrained. The con�dence
limits will be 0 and 5.15. All we know about the half-life is a lower con�dence limit, 8.08 ·
1031 , years.

7.8 We consider con�dence limits. The three measurements give an average metal content of
7.5%, however, the estimate for the standard deviation is 1.29%. This gives an error estimate
for the mean as σ/

√
N = 0.65%. To evaluate signi�cance, the t-value has to be obtained,

t = (x̄− µ)/(σ̂/
√

(N)) = 2.94%. From table 7.2, this corresponds to a one-tailed signi�cance
level with 3 degrees of freedom between 95 and 97.5%, so the result of a higher metal content
is signi�cant.

8 Taking decisions

8.1 The χ2 obtained using eq. (8.6) from the data in the table in sec. 3.3.1 is 0.71. The
degrees of freedom is 4, i.e., the �t is extremely good, χ2 ≪ DoF.

8.2 χ2 is 3313 with the data point 1 for 9 events, and 3.24 with that left out (replaced by
0 events). The number of degrees of freedom is 9 and 8, respectively(10 points, 1 parameter,
λ, and in the second case, one outlier removed). For the expectation value of the Poisson
distribution we get 0.777 and 0.774.
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8.3 In these cases,

(a) At the 10% signi�cance level, the e�ciency of 90% is accepted. At any smaller signi�cance,
it would be rejected.

(b) In this case, the probability of 3 failures out of 3 is 0.001, so at any signi�cance larger than
this, the hypothesis is rejected.

(c) Of 10 tries, there is a 7% probability of 3 or more failures. At a 10% signi�cance, the
advertised e�ciency is rejected. At any signi�cance ≤ 7% it is accepted.

(d) We reject the e�ciency. At least 30 errors has a probability of 2 · 10−8.

For choosing N , it is necessary to decide with what precision we want to detect an e�ciency
below 90%. For N large, for the failures, we may approximate the binomial distribution with
a normal with expectation value µ = Nq and standard deviation σ =

√
Npq, where q = 1− p,

and p is the e�ciency. For a given p, a number of failures larger than µ + 1.64σ has < 10%
probability. E.g., we can distinguish a detector with e�ciency p from a 90% e�cient one if
µ+ 1.64σ > 0.1N . This can be used to choose N .

8.4 The average temperature is 10.12±0.06 (not given in the book whether C or K). Assuming
it is constant yields χ2 = 14.9, which corresponds to a probability sligthly above 10% for DoF
9, in table 8.1, so the hypothesis is rejected at 10% signi�cance. Assuming the true value is
10.1 yields χ2 = 15, which is accepted (now DoF is 10).

8.5 The �t receives 25 input data points, the Gaussian has 3, and the �at background 1
parameters, so the DoF is 21.

8.6 The variance is usually estimated as

V̂ =
1

N

∑
k

(xk − x̄)2 ,

when the binning is done, xk is replaced by the value at the center of the bin, xj, where j = j(k)
is the bin to which it belongs, and

(xk − x̄)2 = (xj + ξk − x̄)2 = (xk − x̄)2 + 2ξk(xk − x̄) + ξ2k ,

the �rst term yields the binned approximation in the book. If one assumes that the points are
uniformly distributed within the bin, the second one averages out to zero, and the third one to∫ xj+w/2

xj−w/2
ξ2kP (x)dx/

∫ xj+w/2

xj−w/2
P (x)dx ≈ w2/12.

9 Ranking methods

9.1 The total number of pairs xy where x is from sample X and y from Y is NxNy. In each
case (if there are no ties), either x is after y contributing to Ux or the y before x, contributing
to Uy. This proves eq. (9.1).

If the two samples are ranked together, the ranke of a given element (say, x) is the number
of x's and the number of y's before it. The latter ones are those that do not each contribute
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one to Rx, while the former not. The total contribution of the x's to Rx is Nx(Nx − 1)/2, so
Rx −Nx(Nx − 1)/2 is the sum of all y's before x's, of all NxNy comparisons these are the ones
not contributing to Ux, yielding

Ux = NxNy − (Rx −Nx(Nx − 1)/2) ,

proving eq. (9.2).

9.2 (a) In the run test, we �nd that the letter sequence is b b b a a b a b a b b b a a a a a, the
number of runs is 8. The expected number is 9.47, with a variance of 3.96, the deviation is 0.74
standard deviation, corresponding to a probability of 54.05%. The two samples agree. (b) The
resulting total numbers of preceded elements from the other samples are Ua = 17, Ub = 55, for
Ua the expectation is 36, with a variance of 102, so the deviation is 1.88 standard deviations,
corresponding to a 93.99% probability, rejected at the 10% con�dence.

9.3 (a) In this case the sequence for the run test is a a a a a b b b b b b b b b b a a a a a
with 3 runs. The expected number of runs is 11, with a variance of 4.74, the deviation is 3.68
standard deviations, so the hypothesis of coming from the same distribution is rejected. (b) In
the Mann-Whitney test Ua = 50, Ub = 50, and the expectation is 50 with a cariance of 166.7,
so the Mann-Whitney test accepts the samples.

Note that sample �a� tends to avoid the true value of 1000. Maybe the seller sold the best
ones separately.

9.4 Pearson's correlation coe�cient is 0.712, Spearman's is 0.782, and the T value inWilcoxon's
matched pairs signed rank test is 36 with an N of 14. Not signi�cant at any level in table 9.1.

The interpretation might be that the political opinion of husband and wife is correlated,
both if the numerical scale is taken seriously (Pearson) and if only the ranking (Spearman).
Wicoxon's test refutes the hypothesis that the two distributions are the same, i.e., opinion of
husband and wife are correlated but not the same.

Notes

p. 23 The book says that �expectation values . . . do not multiply . . . unless [the two random
variables] are independent�. This is imprecise. The expectation values multiply if the two
variables are independent, but the variables may well be dependent (i.e., their probability
distribution function P (f = a, g = b) ̸= P (f = a)P (g = b)), just uncorrelated (which is a word
for the expectation values to multiply). There are many examples, e.g., let x be an integer
random variable with any distribution such that P (x = n) = P (x = −n) = pn, and f = x and
g = |x|. These are clearly not independent,

P (f = k, g = ℓ) =

{
P (f = k) = pk , if ℓ = |k|
0 , otherwise

still,

⟨f · g⟩ =
∑
n

n|n|pn =
∑
n>0

n2pn +
∑
n<0

n|n|pn =
∑
n>0

(n2 + (−n)| − n|)pn = 0 ,

and ⟨f⟩ = 0, ⟨g⟩ =
∑

n>0 2npn >
∑

n>0 pn = 1/2, and ⟨f⟩⟨g⟩ = 0. Independence is a stronger

property of two random variables than uncorrelatedness.
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p. 80 In eq. (5.25b), in stead of 1/(N−1), Bessel's correction should be a factor of N/(N−1)
and the replacement σi → si w.r.t. (5.25a).
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